Cart and Log In

Float Switches for Simplex Pump Control

Float switch diagram

Last week, we introduced lift stations, and the sensors that power them. You can check out the introduction here. This week, we will discuss a common lift station application: simplex pump control.

Controlling pump activity on a simplex lift station is fairly straight forward, but there are a variety of approaches - some of which have great benefits and are relatively unknown.

For those who are new to lift stations, simplex is a fancy name for a one-pump lift station. Using one pump makes it cheaper, but it doesn't have the capacity or the redundancy of a duplex lift station, which we will discuss next week. Today we'll discuss 4 different ways to use float switches, and the 3 different float switches that can be used.

At the end of the day, all we are trying to do with simplex pump control is to turn on a pump when sewage levels reach a certain point, and turn off the pump once levels drop. A single, normally open float switch can make this happen. As sewage levels rise, the float switch is closed, and the pump can be started. As the levels drop, the same float switch returns to its open stage, shutting off the pump.

Mission accomplished, right? Well, not necessarily. Using a single switch causes the pump to be turning on and off far too often. In its worst instance, this is referred to as "chatter," when turbulence causes the float switch to bounce back and forth between open and closed. This is no way to treat a pump, as it greatly increases wear and tear, and causes the pump to overheat.

To solve this problem, we need to move to our next option - a switch with hysteresis. But before we get any further, let's define the term "hysteresis".

Hys-ter-e-sis:

1. The lag in response exhibited by a body in reacting to changes in the forces, especially magnetic forces, affecting it. Compare magnetic hysteresis.

2. the phenomenon exhibited by a system, often a ferromagnetic or imperfectly elastic material, in which the reaction of the system to changes is dependent upon its past reactions to change.

-Dictionary.com

Clear as mud, right? To put it simply, hysteresis in pump station control puts an end to chatter. It means that once the pump starts, it's not going to stop for a while. This is accomplished with multiple switch points and a relay controller or PLC. To make this work with your basic float switch, you are going to need more than one. The first float switch, which is activated at higher levels, is used to start the pump, while a second float, which is activated at lower levels, is used to stop the pump. This configuration provides hysteresis, but requires two float switches, which increases cost and maintenance concerns.

The most common maintenance issue is tangled float cables caused by swirling action from the pump running. This can cause the pump to run continuously in a dry well, or can cause the pump not to start - resulting in an overflow (SSO). And with two sensors you are twice as likely to have a failure due to a malfunctioning sensor.

One float switch that activates at multiple levelsIntroducing Kari floats. These float switches are uniquely built to provide multiple switching points in a single float sensor. As the float pivots from hanging straight down, to floating at its highest point, it opens or closes different switches within the float body. It's like having up to 4 float switches in one!

Float switch model KA-2H or KA-M2H diagramOne Kari float model, the KA-2H has a switch which is activated when the float is high for turning the pump on. As levels drop, it keeps the pump on until it has reached a low level. This ingenious sensor can provide the necessary hysteresis without using any type of controller or relay contacts! With only one sensor in the lift station, maintenance is simplified, and by eliminating the need for a controller, costs and complexity are cut.

Float switch model KA-3Y39 diagramAnother Kari float that has clear benefits for simplex pump control is the KA-3Y39. This product can directly replace a common three-float system, which would include 3 floats (off, on, & high level). The KA-3Y39 would be wired to a controller or pump control relay in the same way 3 individual floats would be used. Now you are getting the benefits of a three float switch system, without the potential problem of tangled floats.

Next week we will take it up a notch, and discuss duplex pump control with float switches, before moving on to continual level measurement.

Have questions about float switches and pump control? Contact our Measurement Experts today.


Inefficient level control wearing out your pumps? Our float switch wiring diagrams will help you maximize the life of your pumps. Check them out below:

Float Switch Wiring Diagrams

Blog Updates In Your Inbox

Contact Details

Phone
888-525-7300
435-753-7300
Fax
435-753-7490
Email
sales@apgsensors.com
Address
1025 W 1700 N
Logan, Utah
84321-1713
USA