• Time to read 2 minutes

Float switch diagram

Last week, we introduced lift stations, and the sensors that power them. You can check out the introduction here. This week, we will discuss a common lift station application: simplex pump control.

Controlling pump activity on a simplex lift station is fairly straight forward, but there are a variety of approaches - some of which have great benefits and are relatively unknown.

For those who are new to lift stations, simplex is a fancy name for a one-pump lift station. Using one pump makes it cheaper, but it doesn't have the capacity or the redundancy of a duplex lift station, which we will discuss next week. Today we'll discuss 4 different ways to use float switches, and the 3 different float switches that can be used.

Case 1: Single Float Switch

At the end of the day, all we are trying to do with simplex pump control is to turn on a pump when sewage levels reach a certain point, and turn off the pump once levels drop. A single, normally open float switch can make this happen. As sewage levels rise, the float switch is closed, and the pump can be started. As the levels drop, the same float switch returns to its open stage, shutting off the pump.

Mission accomplished, right? Well, not necessarily. Using a single switch causes the pump to be turning on and off far too often. In its worst instance, this is referred to as "chatter," when turbulence causes the float switch to bounce back and forth between open and closed. This is no way to treat a pump, as it greatly increases wear and tear, and causes the pump to overheat.

To solve this problem, we need to move to our next option - a system with hysteresis. But before we get any further, let's define the term "hysteresis".


1. The lag in response exhibited by a body in reacting to changes in the forces, especially magnetic forces, affecting it. Compare magnetic hysteresis.

2. the phenomenon exhibited by a system, often a ferromagnetic or imperfectly elastic material, in which the reaction of the system to changes is dependent upon its past reactions to change.


Clear as mud, right? To put it simply, hysteresis in pump station control puts an end to chatter. It means that once the pump starts, it's not going to stop for a while. This is accomplished with multiple switch points and a relay controller or PLC.

Case 2: Two Float Switches

To make hysteresis work with your basic float switch, you are going to need more than one. The first float switch, which is activated at higher levels, is used to start the pump, while a second float, which is activated at lower levels, is used to stop the pump. This configuration provides hysteresis, but requires two float switches, which increases cost and maintenance concerns.

However, the most common maintenance issue for multiple float set ups is tangled float cables, often caused by swirling action from the pump running. Tangled float cables impede the floating (i.e. switching) action of the switches, causing the pump to run continuously in a dry well, or causing the pump to not start - resulting in an overflow (SSO). And with two switches you are twice as likely to have a failure due to a malfunctioning switch.

One float switch that activates at multiple levelsIntroducing Kari floats. These float switches are uniquely built to provide multiple switching points in a single float sensor. As the float pivots from hanging straight down, to floating at its highest point, it opens or closes different switches within the float body. It's like having up to 4 float switches in one!

Case 3: Two Switches in a Single Float

Float switch model KA-2H or KA-M2H diagramOne Kari float model, the KA-2H has a switch which is activated when the float is high for turning the pump on. As levels drop, it keeps the pump on until it has reached a low level. This ingenious sensor can provide the necessary hysteresis without using any type of controller or relay contacts! With only one sensor in the lift station, maintenance is simplified, and by eliminating the need for a controller, costs and complexity are cut.

Case 4: Three Switches in a Single Float

Float switch model KA-3Y39 diagramAnother Kari float that has clear benefits for simplex pump control is the KA-3Y39. This product can directly replace a common three-float system, which would include 3 floats (off, on, & high level). The KA-3Y39 would be wired to a controller or pump control relay in the same way 3 individual floats would be used. Now you are getting the benefits of a three float switch system, without the potential problem of tangled floats.

Next week we will take it up a notch, and discuss duplex pump control with float switches, before moving on to continual level measurement.

Have questions about float switches and pump control? Contact our Measurement Experts today.

Explore APG Float Switches