LPU-2428 & RST-4101
User Manual
Table of Contents

Introduction ... iii

Warranty and Warranty Restrictions .. iv

Chapter 1: Specifications and Options ... 1
 Dimensions ... 1
 Specifications .. 2

Chapter 2: Installation and Removal Procedures and Notes .. 3
 Tools Needed .. 3
 Installation Notes ... 3
 Mounting Instructions .. 4
 Electrical Installation ... 4
 Software Installation ... 5
 Removal Instructions ... 5

Chapter 3: Maintenance .. 5
 General Care ... 5
 Troubleshooting .. 6
 Calibration ... 6-7
 Repair and Returns .. 7

Chapter 4: Programming and Parameter Configuration ... 8
 Software User Interface ... 8-9
 Programming the LPU-2428 ... 10
 Basic Setup Menu .. 11-12
 App. Setup Menu .. 13-31
 4-20 Setup Menu ... 31-32
 Calibration Menu .. 33-34
 Advanced Menu ... 34-36
 Utilities Menu .. 36-38
 Totalization Menu .. 39

Chapter 5: Hazardous Location Drawing and Certification .. 40
 Intrinsically Safe Wiring Diagram .. 40
 Hazardous Location Wiring Diagram .. 41
 CSA Certificate of Compliance .. 42-45
Introduction

Thank you for purchasing an LPU-2428 ultrasonic sensor and RST-4101 programming module from APG. We appreciate your business! Please take a few minutes to familiarize yourself with your LPU-2428, RST-4101, and this manual.

The LPU-2428 loop-powered ultrasonic sensor provides a low-power, non-contact level measurement solution rated for hazardous locations and suitable for harsh chemical environments.

The default Application setting for the LPU-2428 is Distance, which will work in a wide variety of settings. The LPU-2428 has several additional Application settings that can be configured to meet your needs.

Reading your label

Every APG instrument comes with a label that includes the instrument’s model number, part number, serial number, and a wiring pinout table. Please ensure that the part number and pinout table on your label match your order. The following electrical ratings and approvals are also listed on the label. Please refer to the Certificate of Compliance at the back of this manual for further details.

Electrical ratings

Input: 12 to 28 Volts DC; Output: 4-20mA

Class I Division 1; Groups C, D T3
Class I, Zone 0, Group IIB
AEx ia IIB T3 (USA): Ta: -40°C to 60°C; IP65
Ex ia IIB T3 (Canada): Ta: -40°C to 60°C; IP65

Vmax U_i = 28VDC, I_{max} I_i = 130mA, P_{max} P_i = 0.91W, C_i = 0nF, L_i = 110μH
Install in accordance with drawing 9002747 (page 42).

Input: 12 to 28 Volts DC; Output: 4-20mA

Class I Division 2; Groups C, D T6
Class I, Zone 2, Group IIB
AEx nA IIB T6: Ta: -40°C to 60°C; IP65
Ex nA IIB T6: Ta: -40°C to +60°C; IP65

Install in accordance with drawing 9002745 (page 43).

IMPORTANT: Your LPU-2428 MUST be installed according to drawing 9002747 as indicated above to meet Intrinsically Safe approvals. Faulty installation will invalidate all safety approvals and ratings.
Warranty and Warranty Restrictions

This product is covered by APG’s warranty to be free from defects in material and workmanship under normal use and service of the product for 24 months. For a full explanation of our Warranty, please visit https://www.apgsensors.com/about-us/terms-conditions. Contact Technical Support to receive a Return Material Authorization before shipping your product back.

Scan the QR code below to read the full explanation of our Warranty on your tablet or smartphone.
Chapter 1: Specifications and Options

• Dimensions

![Diagram showing dimensions of the sensor](image)

- **Dimensions**
 - **2" NPT Threads**
 - Ø2.00 [50.80 mm]
 - 5.06 [128.59 mm]
 - **3/4" NPT Threads**
 - Ø2.79 [70.78 mm]
 - 2.65 [67.24 mm]
 - **Non-Metallic Strain Relief**
 - 7.25 [184.15 mm]
• Specifications

Performance
- Operating Range
 - On liquids and hard, flat surfaces: 1 - 25 ft. (0.3 - 7.6 m)
 - On bulk solids: 1 - 10 ft. (0.3 - 3 m)
- Analog Output (Sensor): 4-20 mA
- Analog Output (Module): USB
- Beam Pattern: 9° off axis
- Frequency: 69 kHz
- Response Time: 0.6 - 3 seconds (dependent on output range)
- Sample Rate:
 - 3 seconds @ 4 mA
 - 0.6 seconds @ 20 mA

Accuracy
- Accuracy: ±0.25% of detected range
- Resolution: 0.1 inch (2.54 mm)

Environmental
- Operating Temperature: -40 to 60°C (-40 to 140°F)
- Internal Temperature Compensation: Yes
- Enclosure Protection: IP65
- NEMA rating (Sensor): 4X

Electrical
- Supply Voltage (at sensor): 12-28 VDC
- Current Draw: 22 mA max
- Output Signal: 3-30 mA max
- Load Resistance:
 - 1500Ω max @ 12 VDC
 - 600Ω max @ 24 VDC
- Cable Connection (Sensor): 2-wire cable included
- Cable Connection (Module): 2-terminal Phoenix connector, USB

Materials of Construction
- Transducer Housing: PVDF (Kynar®)
- Upper Housing (Sensor): PC/PBT
- Housing (Module): ABS PA-756
Chapter 2: Installation and Removal Procedures and Notes

• **Tools Needed**

Tools are not necessary for installing the LPU itself. If you are using a stand pipe to mount your LPU, you will probably need tools to install the stand pipe, but not for the LPU.

• **Installation Notes**

- Mount your LPU sensor so that it has a clear, perpendicular sound path to the surface being monitored. Your sensor should be mounted away from tank or vessel walls and inlets. See Figure 2.1.
- The sound path should be free from obstructions and as open as possible for the 9° off axis beam pattern.
- If you are using a stand pipe, please see our guide to stand pipes on our website: http://www.apgsensors.com/about-us/blog/how-to-install-a-stand-pipe.

![Figure 2.1](image-url)

NOTE: Do not mount the sensor where the beam will intersect objects such as fill streams, pipes, ladder rungs, wall seams, or corrugated tank walls.
• **Mounting Instructions**

Mounting your LPU is easy if you follow a few simple steps:

- Never over-tighten the sensor.
- Always screw in your sensor by hand to avoid cross-threading. Thread failure can be a problem if you damage threads by over-tightening them or by crossing threads.

IMPORTANT: Do not over tighten! The sensor should be threaded in only hand tight.

• **Electrical Installation**

For normal operation, connect the provided cable to your control system:

- Connect the red wire to +24 VDC.
- Connect the black wire to 4-20 mA input. Circuit load resistance + input resistance must be greater than 150Ω. 249Ω is recommended for optimal signal transmission.
- Refer to drawing 9002747 (page 42) for Intrinsically Safe installation.
- Refer to drawing 9002745 (page 43) for hazardous location installation.

For programming:

- Connect (+) terminal of RST-4101 to +24 VDC supply of sensor (red wire).
- Connect (-) terminal of RST-4101 to 4-20 mA signal from sensor (black wire).
- Ensure that load resistor is between RST-4101 and control network or PLC, rather than between sensor and RST-4001. (See Figure 2.2)

![Figure 2.2](image-url)
• **Software Installation**

 • Download the LPU-2428A / RST-4101 software zip file from http://apgsensors.com/support.
 • Open the zip file.
 • Choose “Install” from the options at the top of the zip file window.
 • The installation process will prompt you as needed to complete the installation.
 • The software will create and run from a folder in your start menu titled “APG”.

• **Removal Instructions**

 • Ensure that power to the sensor is off.
 • Disconnect the cable from the sensor.
 • Remove the sensor and store it in a dry place, at a temperature between -40° F and 180° F.
 • If the sensor was installed in a hazardous location, ensure that the cable will not be energized while the sensor is disconnected.

 ⚠️ **DANGER:** Do not disconnect equipment installed in hazardous locations unless power has been switched off or area is known to be non-hazardous.

Chapter 3: Maintenance

• **General Care**

 Your LPU-2428 ultrasonic sensor is very low maintenance and will need little care as long as it was installed correctly. However, in general, you should:

 • **Avoid applications for which the sensor was not designed**, such as extreme temperatures, contact with incompatible corrosive chemicals and fumes, or other damaging environments.
 • **Inspect the threads** whenever you remove the sensor from duty or change its location.
• **Trouble Shooting**

Should you have problems with your LPU-2428, here are some troubleshooting steps.
- Check the received signal strength (just to left of the three Help buttons in the lower right corner. See Figure 4.32). If the signal strength is low, alternately increase Pulses and Sensitivity (Figure 4.30) until the signal strength improves.
- Ensure Temperature Compensation (Figure 4.30) is turned on.
- Set the Gain Control to AutoSense (Figure 4.30).
- Ensure that Blanking (Figure 4.30) is accurately set to account for any unwanted targets between the sensor and the closest acceptable target.

• **Calibration**

This procedure uses targets at known distances to calibrate the sensor’s accuracy. A wall or other large, flat object is recommended for the long range target.
- Point the sensor at a target at a known distance near the maximum range of the sensor, 25’ for a single solid object (See Figure 3.1).
- Adjust the Multiplier value until the distance reading on the sensor matches the actual measured distance to the target (See Figure 4.29).
- Point the sensor at a target near the minimum measurement range, 1’ plus any Blanking distance (See Figure 3.2).
- Adjust the Offset value until the distance reading on the sensor matches the actual measured distance to the target (See Figure 4.29).
- Repeat previous two steps until no further adjustment is required.

![Figure 3.1](image1.png) ![Figure 3.2](image2.png)
NOTE: The Reset parameter in the Utilities Menu (Figure 4.31) will reset the LPU-2428 to factory default settings.

• Repair and Returns

Should your LPU-2428 ultrasonic sensor require service, please contact the factory via phone, email, or online chat. We will issue you a Return Material Authorization (RMA) number with instructions.

• Phone: 888-525-7300
• Email: sales@apgsensors.com
• Online chat at www.apgsensors.com

Please have your LPU-2428’s part number and serial number available. See Warranty and Warranty Restrictions for more information.
Chapter 4: Programming and Parameter Configuration

• Software User Interface

The LPU-2428A / RST-4101 software user interface is one screen with five primary areas (See Figure 4.1). In the upper left are seven Menu Buttons. These buttons control the information viewed in the Display Area. Below the Menu Buttons and Display Area are six Status Boxes in two columns. Under the right hand column of Status Boxes are three Control Buttons. Three Help Buttons are located in the lower right hand corner of the screen.

![Figure 4.1](image)
The two Status Boxes in the right column show the status of communication between the RST-4101 and the sensor, and between the LPU-2428A software and the RST-4101 (See Figure 4.2).

If an error is indicated, then check for proper connections. Allow a moment for the communication to be established while watching the status box to indicate “Sensor Communicating”. If this fails to establish communication, plug the USB cable into another USB port on the computer. After communication is established, click on the “Receive” button to load the sensor settings into the software.

![Figure 4.2](image_url)

Along the bottom of the LPU-2428A software screen are two communication status boxes and a signal strength display (See Figure 4.3a). The Sent and Received Status Boxes indicate whether the last communication between the software and the sensor was successfully completed. After the Send or Receive Button is clicked, the corresponding Status Box will show the progress of the communication (See Figure 4.4b).

The Signal Strength display indicates the strength of the communication signal being received back by the software from the LPU-2428.

![Figure 4.3a](image_url)

![Figure 4.3b](image_url)
• **Programming the LPU-2428**

The following menus are used to program the LPU-2428 in conjunction with the LPU-2428A software. Menus in the LPU-2428A software are navigated by clicking on the desired Menu Buttons on the left side of the screen.

Main:
Displays distance, level, volume, or flow. A graphical representation is displayed for level, volume, or flow.

Basic Setup:
Menu contains Units, Application, Flow/Volume Units, Flow Rate, and Response Time.

App. Setup:
Menu contains parameters specific to the current Application selected in Basic Setup. These include Volume Tank Type, Flow Type, Max/Full Distance, Zero/Empty Distance, and values for flow or volume.

4-20 Setup:
Menu contains Min & Max mA Setpoints, Fail Safe, and Fail Safe Delay.

Calibration (not required on most applications):
Menu contains Min & Max mA Value, Min & Max mA Trim, Multiplier, and Offset.

Advanced:
Menu contains Temperature Compensation, Gain Control, Sensitivity, Pulses, and Blanking.

Utilities:
Menu contains Low & High Distance Simulation, Simulation Cycle Time, Reset, File System, and Software Version.
• Basic Setup Menu

Figure 4.4

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Setup</td>
<td>Units</td>
<td>Default = Feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Millimeters</td>
</tr>
</tbody>
</table>

Units selects the units of measurement that will be used throughout the setup process and also for display. The selected units also determines the resolution of the display and the outputs. The resolution is: feet 0.01, inches 0.1, 0.000 meters, and millimeters 1.

NOTE: All parameter settings use the units selected in Units.
Application

Application selects the measurement function of LPU-2428. Parameters for each application are configured in the App. Setup menu (See Figure 4.5). The selected application is displayed on the Main Screen under the measurement (See Figure 4.2).

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Setup</td>
<td>Application</td>
<td>Default = Distance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linearization Table</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Submersible</td>
</tr>
</tbody>
</table>

Volume Units

Volume Units selects the units for volume measurement. *Volume Units* is greyed out in the LPU-2428A software unless *Application* is set to Volume or Flow.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Setup</td>
<td>Volume Units</td>
<td>Default = Cubic Feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cubic Feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Million Cubic Feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gallons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cubic Meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liters</td>
</tr>
</tbody>
</table>

Flow Rate

Flow Rate selects the units for flow rate measurement. *Volume Units* is greyed out in the LPU-2428A software unless *Application* is set to Flow.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Setup</td>
<td>Flow Rate</td>
<td>Default = Per Minute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per Second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per Minute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per Hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per Day</td>
</tr>
</tbody>
</table>

Response Time

Response Time selects the desired response time of the LPU-2428. The response time represents the maximum rate of change in target level that the sensor will accurately display. A faster response time correlates to a less stable output.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Setup</td>
<td>Response Time</td>
<td>Default = Standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immediate</td>
</tr>
</tbody>
</table>
• **App. Setup Menu**

![App. Setup Menu Image]

Figure 4.5

<table>
<thead>
<tr>
<th>App Function</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
</table>
| Distance | *Max Distance* | Default = 25.00 Feet
1.00 - 25.00 Feet
12.0 - 300.0 Inches
0.305 - 7.620 Meters
305 - 7620 Millimeters |

Max Distance sets the maximum operating range for the LPU-2428. 25 feet is the physical limit of the LPU-2428. (See Figure 4.5)
Parameter Options

<table>
<thead>
<tr>
<th>App Function</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Full Distance</td>
<td>Default = 1.00 Feet, 0.00 - 25.00 Feet, 0.00 - 300.0 Inches, 000 - 7.620 Meters, 305 - 7620 Millimeters</td>
</tr>
</tbody>
</table>

Full Distance sets the distance from the sensor to the full level of the vessel being monitored. (See Figure 4.6)

<table>
<thead>
<tr>
<th>App Function</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Empty Distance</td>
<td>Default = 25.00 Feet, 1.00 - 25.00 Feet, 12.0 - 300.0 Inches, 0.305 - 7.620 Meters, 305 - 7620 Millimeters</td>
</tr>
</tbody>
</table>

Empty Distance sets the distance from the sensor to the empty level of the vessel being monitored. (See Figure 4.6)
App Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
</table>
| Volume | Tank Type | Default = SCTWHB
| | | SCTWCB
| | | SRT
| | | HCT
| | | ST |

Tank Type selects the general geometry of the tank. (See Figures 4.7-4.11)

App Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
</table>
| Volume | Full Distance | Default = 1.00 Feet
| | | 0.00 - 25.00 Feet
| | | 0.00 - 300.0 Inches
| | | 0.000 - 7.620 Meters
| | | 000 - 7620 Millimeters |

Full Distance sets the distance from the sensor to the full level of the tank being monitored. (See Figures 4.7-4.11)
Empty Distance sets the distance from the sensor to the empty level of the tank being monitored. (See Figures 4.7-4.11)

Tank Diameter sets the diameter of cylindrical (SCTWHB, SCTWCB, HCT) or spherical (ST) tank. (See Figures 4.7, 4.8, 4.10, and 4.11)
App Function: Volume

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius of Hemi</td>
<td>Default = 1.00, 0.00 - 25.00 Feet, 0.00 - 7.620 Meters, 000 - 7620 Millimeters</td>
</tr>
</tbody>
</table>

Radius of Hemi sets the radius of the hemisphere on the bottom (SCTWHB) or end (HCT) of a standing or horizontal cylindrical tank. (See Figures 4.7 and 4.10)

App Function: Cone Diameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cone Diameter</td>
<td>Default = 1.00, 0.00 - 100.00 Feet, 00.0 - 1200.0 Inches, 0.000 - 30.480 Meters, 000 - 30480 Millimeters</td>
</tr>
</tbody>
</table>

Cone Diameter sets the lower diameter of the cone chute on a standing cylindrical tank (SCTWCB). (See Figure 4.8)
Cone Height

Cone Height sets the height of the cone chute on a SCTWCB. (See Figure 4.8)

<table>
<thead>
<tr>
<th>App Function</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Cone Height</td>
<td>Default = 1.00</td>
</tr>
<tr>
<td>SCTWCB</td>
<td></td>
<td>0.00 - 25.00 Feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00.0 - 300.0 Inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 - 7.620 Meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>000 - 7620 Millimeters</td>
</tr>
</tbody>
</table>

Tank Length

Tank Length sets the length of a rectangular (SRT) or horizontal cylindrical (HCT) tank. (See Figures 4.9 and 4.10)

<table>
<thead>
<tr>
<th>App Function</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Tank Length</td>
<td>Default = 1.00</td>
</tr>
<tr>
<td>SRT</td>
<td></td>
<td>0.00 - 100.00 Feet</td>
</tr>
<tr>
<td>HCT</td>
<td></td>
<td>00.0 - 1200.0 Inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 - 30.480 Meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>000 - 30480 Millimeters</td>
</tr>
<tr>
<td>App Function</td>
<td>Parameter</td>
<td>Options</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Volume</td>
<td>Tank Width</td>
<td>Default = 1.00, 0.00 - 25.00 Feet, 0.00 - 300.0 Inches, 0.000 - 7.620 Meters, 000 - 7620 Millimeters</td>
</tr>
<tr>
<td>SRT</td>
<td></td>
<td>SRT - Sensor Communicating, USB - RST Communication OK</td>
</tr>
</tbody>
</table>

Tank Width sets the width of a rectangular (SRT) tank. (See Figure 4.9)

<table>
<thead>
<tr>
<th>App Function</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Chute Length</td>
<td>Default = 1.00, 0.00 - 25.00 Feet, 0.00 - 300.0 Inches, 0.000 - 7.620 Meters, 000 - 7620 Millimeters</td>
</tr>
<tr>
<td>SRT</td>
<td></td>
<td>SRT - Sensor Communicating, USB - RST Communication OK</td>
</tr>
</tbody>
</table>

Chute Length sets the length of a chute under a rectangular (SRT) tank. The length of the chute is in the same direction as the length of the tank. (See Figure 4.9)
Parameters for SRT C Width

<table>
<thead>
<tr>
<th>App Function</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Chute Width</td>
<td>Default = 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 - 25.00 Feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 - 7.620 Meters</td>
</tr>
<tr>
<td>SRT (C Width)</td>
<td></td>
<td>0.000 - 7620 Millimeters</td>
</tr>
</tbody>
</table>

Chute Width sets the width of a chute under a rectangular (SRT) tank. The width of the chute is in the same direction as the width of the tank. (See Figure 4.9)

Parameters for Chute Height

<table>
<thead>
<tr>
<th>App Function</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Chute Height</td>
<td>Default = 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 - 25.00 Feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 - 300.0 Inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 - 7.620 Meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>000 - 7620 Millimeters</td>
</tr>
</tbody>
</table>

Chute Height sets the height of a chute under a rectangular (SRT) tank. (See Figure 4.9)

Parameters for Flow Type

<table>
<thead>
<tr>
<th>App Function</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>Flow Type</td>
<td>Default = Flume</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flume</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equation</td>
</tr>
</tbody>
</table>

Flow Type selects the type of flow being monitored. (See Figures 4.12-4.22)

Parameters for Flume Type

<table>
<thead>
<tr>
<th>App Function</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flume</td>
<td>Flume Type</td>
<td>Default = Parshall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parshall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cut Throat</td>
</tr>
</tbody>
</table>

Flume Type selects the type of flume being monitored. (See Figure 4.12-4.13)

Parameters for Weir Type

<table>
<thead>
<tr>
<th>App Function</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weir</td>
<td>Weir Type</td>
<td>Default = California Pipe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>California Pipe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rectangle w/Const</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rectangle w/o Const</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trapazoidal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triangular or V-Notch</td>
</tr>
</tbody>
</table>

Weir Type selects the type of weir being monitored. (See Figure 4.14-4.18)
Equation selects the equation that best models the flow being monitored. (See Figure 4.19-4.22)

App Function	**Parameter**	**Options**
Equation	Equation	Default = $Q=KH^n$
	$Q=KH^n$	
	$Q=KLH^n$	
	$Q=K[L-XH]H^n$	
	$Q=K[B-A/D]^{n_1}P^{n_2}$	

Equation selects the equation that best models the flow being monitored. (See Figure 4.19-4.22)

App Function	**Parameter**	**Options**
Flow	Max Flow	Default = 1.00
	0.00 - 25.00 Feet	
	0.00 - 300.0 Inches	
	0.000 - 7.620 Meters	
	000 - 7620 Millimeters	

Max Flow sets the distance from the sensor to the maximum height of the flow. (See Figures 4.12-4.22)
Table 4.15

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>1.00 ft, 25.00 ft</td>
</tr>
<tr>
<td>Temperature</td>
<td>21 C</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>1795 Gallons Per Min</td>
</tr>
<tr>
<td>4-20mA</td>
<td>NaN, NaN</td>
</tr>
</tbody>
</table>

Table 4.16

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>0.86 ft, 3.82 ft</td>
</tr>
<tr>
<td>Temperature</td>
<td>21 C</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>1795 Gallons Per Min</td>
</tr>
<tr>
<td>4-20mA</td>
<td>NaN, NaN</td>
</tr>
</tbody>
</table>
App Function | **Parameter** | **Options**
---|---|---
Flow | Zero Flow | Default = 1.00
0.00 - 25.00 Feet
00.0 - 300.0 Inches
0.000 - 7.620 Meters
000 - 7620 Millimeters

Zero Flow sets the distance from the sensor to the level of minimum flow. (See Figure 4.12-4.22)

App Function	**Parameter**	**Options**
Flow | Constant K | Default = Varies

Constant K sets the flow coefficient K for the channel being monitored. The range for K varies for each application. Flume configurations have selectable widths that provide appropriate K values. Weir configurations include suggested K values on the right side of the screen. (See Figures 4.12-4.22)
Figure 4.18

Figure 4.19
App Function	**Parameter**	**Options**
Flow | Exponent n / n_1 | Default = varies

Exponent n or n1 sets the value of the (first) exponent for the channel being monitored. The range for n or n1 varies for each application. Flume configurations have selectable widths that provide appropriate n or n1 values. Weir configurations include suggested n or n1 values on the right side of the screen. (See Figures 4.12-4.22)

App Function	**Parameter**	**Options**
Flow, Cutthroat (N_2), Cal. Pipe | Exponent n_2 | Default = varies

$Q=K[B-A/D]^{n_1}P^{n_2}$

Exponent n2 sets the value of the second exponent for Cutthroat flume and California pipe weirs being monitored. The range for n2 varies for each application. Flume configurations have selectable widths that provide appropriate n2 values. Weir configurations include suggested n2 values on the right side of the screen. (See Figures 4.13, 4.14, and 4.22)
Figure 4.21

LPU-2428A

- **Main**
 - Flow Type
 - Equation: \(Q = K(L - X)H^m \)

- **Basic Setup**
 - Max Flow (0-25.00 ft): 0.00 ft
 - Zero Flow (1.00-25.00 ft): 25.00 ft

- **App. Setup**
 - Constant K (0-10e308): 3142.00
 - Exponent n (0-10e308): 1.523

- **4-20 Setup**
 - Constant X (0-10e308): 0.005

- **Calibration**

- **Advanced**

- **Utilities**

- **Totalization**

Distance = 1.00 ft, 4.30 ft

Temperature = 21 C

Flow = 1795 Gallons Per Min

4-20mA = NaN, NaN

RST - Sensor Communicating

USB - RST Communication OK

Figure 4.22

LPU-2428A

- **Main**

- **Basic Setup**

- **App. Setup**

- **4-20 Setup**

- **Calibration**

- **Advanced**

- **Utilities**

- **Totalization**

Distance = 1.00 ft, 4.30 ft

Temperature = 21 C

Flow = 1795 Gallons Per Min

4-20mA = NaN, NaN

RST - Sensor Communicating

USB - RST Communication OK
### App Function	Parameter	Options
Flow - Flume | Throat Width | Default = 1.00 0.00 - 25.00 Feet 00.0 - 300.0 Inches 0.000 - 7.620 Meters 000 - 7620 Millimeters
Cut Throat

Throat Width sets the width of a Cut Throat flume. Length and width combinations can be selected from the right side of the screen. (See Figure 4.13)

### App Function	Parameter	Options
Flow - Weir | Diameter of Pipe | Default = 1.00 0.00 - 25.00 Feet 00.0 - 300.0 Inches 0.000 - 7.620 Meters 000 - 7620 Millimeters
Calif. Pipe

Diameter of Pipe sets the diameter of a California Pipe type weir. (See Figure 4.14)

### App Function	Parameter	Options
Flow - Weir | Crest Length | Default = 1.00 0.00 - 25.00 Feet 00.0 - 300.0 Inches 0.000 - 7.620 Meters 000 - 7620 Millimeters
Rect w/cst
Rect w/o cst
Trapezoidal

Crest Length sets the crest length for Rectangular (with and without constriction) and Trapezoidal weirs. (See Figures 4.15, 4.16, and 4.17)

### App Function	Parameter	Options
Flow - Equation | Length | Default = 10.000 0 - 10e308 (ft)
Q=KLH^n
Q=K[L-XH]H^n

Length sets the value of the L variable in the flow equations. Length can be set using the RST-4001, but can only be adjusted by 0.001 increments using the UP and DOWN arrows. (See Figures 4.20, 4.21, and 4.1)

### App Function	Parameter	Options
Flow - Equation | Constant X | Default = 0.006 0 - 10e308
Q=K[L-XH]H^n

Constant X sets the value of the X constant in the flow equation Q=K[L-XH]H^n. (See Figures 4.21)
### App Function	Parameter	Options
Flow - Equation	$Constant\ D$	Default $= 10.000$
		$0 - 10e308$

$Constant\ D$ sets the value of the D constant in the flow equation $Q=K[\frac{B-A}{D}]^n^Pn^2$. (See Figures 4.22)

### App Function	Parameter	Options
Linearization Table	$Max\ Distance$	Default $= 1.00$ Feet
		$0.00 - 25.00$ Feet
		$0.0 - 300.0$ Inches
		$0.000 - 7.620$ Meters
		$000 - 7620$ Millimeters

$Max\ Distance$ sets the distance from the sensor to the point of maximum volume for a linear table. (See Figure 4.23)

### App Function	Parameter	Options
Linearization Table	$Zero\ Distance$	Default $= 20.00$ Feet
		$1.00 - 25.00$ Feet
		$12.0 - 300.0$ Inches
		$0.305 - 7.620$ Meters
		$305 - 7620$ Millimeters

$Zero\ Distance$ sets the distance from the sensor to the point of zero volume for a linear table. (See Figure 4.23)

### App Function	Parameter	Options
Submersible	$Submersible\ Range$	Default $= 1.00$ Feet
		$0.00 - 25.00$ Feet
		$0.0 - 300.0$ Inches
		$0.000 - 7.620$ Meters
		$000 - 7620$ Millimeters

$Submersible\ Range$ sets distance from the sensor to point at which a hypothetical pressure transducer would be submerged. (See Figure 4.24)

### App Function	Parameter	Options
Submersible	$Depth\ Distance$	Default $= 20.00$ Feet
		$0.00 - 25.00$ Feet
		$0.0 - 300.0$ Inches
		$0.000 - 7.620$ Meters
		$000 - 7620$ Millimeters

$Depth\ Distance$ represents the equivalent depth for the 20mA output setting of the hypothetical pressure transducer. (See Figures 4.24 and 4.25)
Figure 4.23

Figure 4.24
Transducer PSI to Milliamp Chart

<table>
<thead>
<tr>
<th>PSI Range</th>
<th>Milliamp</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 PSI</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10-15 PSI</td>
<td>10.4</td>
<td>2.0</td>
</tr>
<tr>
<td>20-25 PSI</td>
<td>16.8</td>
<td>3.0</td>
</tr>
<tr>
<td>30-35 PSI</td>
<td>23.1</td>
<td>4.0</td>
</tr>
<tr>
<td>40-45 PSI</td>
<td>29.4</td>
<td>5.0</td>
</tr>
<tr>
<td>50-55 PSI</td>
<td>35.7</td>
<td>6.0</td>
</tr>
<tr>
<td>60-65 PSI</td>
<td>42.0</td>
<td>7.0</td>
</tr>
<tr>
<td>70-75 PSI</td>
<td>48.3</td>
<td>8.0</td>
</tr>
<tr>
<td>80-85 PSI</td>
<td>54.6</td>
<td>9.0</td>
</tr>
<tr>
<td>90-95 PSI</td>
<td>60.9</td>
<td>10.0</td>
</tr>
<tr>
<td>100 PSI</td>
<td>67.2</td>
<td>11.0</td>
</tr>
</tbody>
</table>

NOTE: Parameter Options will change for Applications other than Distance or Level.

4-20 Setup Menu

Parameter

- **Min mA Setpoint**
- **Max mA Setpoint**

Distance/Level Options

- Default = 1.00 Feet
- 0.00 - 25.00 Feet
- 0.0 - 300.0 Inches
- 0.000 - 7.620 Meters
- 0000 - 7620 Millimeters

Min mA Setpoint sets the distance from the sensor to the level corresponding to minimum output (4mA). (See Figures 4.26 - 4.28)

Max mA Setpoint sets the distance from the sensor to the level corresponding to maximum output (20mA). (See Figures 4.26 - 4.28)
Figure 4.26

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-20 Setup</td>
<td>Fail Safe</td>
<td>Default = Hold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.8 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22mA</td>
</tr>
</tbody>
</table>

Fail Safe sets the output condition that the sensor will revert to in the event of a loss of echo condition. If Fail Safe is set to Hold, the sensor will hold the last reading until the signal is regained. (See Figure 4.26)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-20 Setup</td>
<td>Fail Safe Delay</td>
<td>Default = 15 sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 - 9999 sec</td>
</tr>
</tbody>
</table>

Fail Safe sets the delay, in seconds, before the output shows the loss of echo condition set in Fail Safe. When this time has expired, the output will change to the Fail Safe settings. (See Figure 4.26)
Calibration Menu

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>Min mA Value</td>
<td>Default = 4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.00 - Max mA Value</td>
</tr>
</tbody>
</table>

Min mA Value sets the minimum current output of the sensor. (See Figure 4.29)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>Max mA Value</td>
<td>Default = 20.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min mA Value - 20.00</td>
</tr>
</tbody>
</table>

Max mA Value sets the maximum current output of the sensor. (See Figure 4.29)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>Min mA Trim</td>
<td>Default = 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 - 999</td>
</tr>
</tbody>
</table>

Min mA Trim fine tunes the minimum current output of the sensor. (See Figure 4.29)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>Max mA Trim</td>
<td>Default = 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 - 999</td>
</tr>
</tbody>
</table>

Max mA Trim fine tunes the maximum current output of the sensor. (See Figure 4.29)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>Multiplier</td>
<td>Default = 1.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 - 1.999</td>
</tr>
</tbody>
</table>

Multiplier calibrates the sensor for variations in the speed of sound due to variations in atmospheres. The default of 1.000 is used for most applications. (See Figure 4.29)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>Offset</td>
<td>Default = 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 3.00 - 3.00 (ft)</td>
</tr>
</tbody>
</table>

Offset is used to change the Zero Point of the sensor. This not the zero output (4 mA) point of the sensor. The Zero Point of the sensor is the point from which the calculated distance is measured. (See Figures 4.27, 4.28, and 4.29)
• **Advanced Menu**

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced</td>
<td>Temp. Comp.</td>
<td>Default = ON
ON / OFF</td>
</tr>
</tbody>
</table>

Temperature Compensation activates or deactivates the internal temperature compensation circuit. The speed of sound changes with changes in temperature, therefore changes in temperature can affect distance measurements. (See Figure 4.30)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced</td>
<td>Gain Control</td>
<td>Default = AutoSense
Manual
AutoSense
Hard Target
Soft Target</td>
</tr>
</tbody>
</table>

Gain Control selects the control mode for the sensor’s gain settings (Sensitivity and Pulses). In AutoSense, the sensor automatically adjusts the sensitivity and pulses for the best quality return signal. Manual, Hard Target, and Soft Target are user controlled scenarios. In Manual, the user is in full control of sensitivity and pulses. For Hard and Soft Target, the user sets sensitivity and pulses, but the overall gain is either ramped up slowly (Hard Target) or quickly (Soft Target) by the sensor. (See Figure 4.30)
Menu	Parameter	Options
Advanced	Sensitivity	Default = 100%
	0 - 100%	

Sensitivity sets the amount of gain applied to the received signal. For gain control settings Auto Sense, Hard Target, and Soft Target, this setting limits the maximum gain applied by the sensor. (See Figure 4.30)

Menu	Parameter	Options
Advanced	Pulses	Default = 16
	0 - 16	

Pulses sets number ultrasonic pulses per transmission burst. For gain control settings Auto Sense, Hard Target, and Soft Target, this setting limits the maximum number of pulses used by the sensor. The more pulses that are sent in a burst, the stronger the returning echo. When operating in Manual, increase the strength of the transmission by increasing the number of pulses for detecting soft targets in damping environments. In acoustically active environments or small enclosed areas, decrease the number of pulses to reduce multiple echoes. (See Figure 4.30)
Blanking sets the Blanking distance, which is the zone from the sensor to a point where the first echo will be accepted. Blanking distance is used to ignore unwanted targets -- such as welds, seams, pipe fittings, or gaskets -- between the sensor and the closest acceptable target level. Because of the physical properties of an ultrasonic sensor, objects cannot be detected closer than approximately 1 foot from the face of the transducer. This distance varies according to how much energy is being transmitted and the installation. Low pulses and soft mounting may allow target detection as close as 6 inches. (See Figure 4.30)

Utilities Menu

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>Low Distance Simulation</td>
<td>Default = 1.00 (ft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.00 - 25.00 Feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.0 - 300.0 Inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.305 - 7.620 Meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>305 - 7620 Millimeters</td>
</tr>
</tbody>
</table>

Low Distance Simulation sets the low distance point for simulation. (See Figure 4.31)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>High Distance Simulation</td>
<td>Default = 1.00 (ft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.00 - 25.00 Feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.0 - 300.0 Inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.305 - 7.620 Meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>305 - 7620 Millimeters</td>
</tr>
</tbody>
</table>

High Distance Simulation sets the high distance point for simulation. (See Figure 4.31)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>Simulation Cycle Time</td>
<td>Default = Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 - 9 seconds = Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 - 9999 seconds = On</td>
</tr>
</tbody>
</table>

Simulation Cycle Time sets the running time for a cycle simulation between the low distance point and high distance point set above. (See Figure 4.31)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>Reset</td>
<td>Default = No Reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensor Reset</td>
</tr>
</tbody>
</table>

Reset resets the sensor to factory defaults. (See Figure 4.31)
File System

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>File System</td>
<td>Default = None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensor to File</td>
</tr>
<tr>
<td></td>
<td></td>
<td>File to Sensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare Sensor to File</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

File System allows the user to edit, save, and load text files containing sensor parameters. (See Figure 4.31)

Sensor Version

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>Sensor Version</td>
<td></td>
</tr>
</tbody>
</table>

Sensor Version displays the current software version running on the sensor. (See Figure 4.31)

Raw Readings

<table>
<thead>
<tr>
<th>Menu</th>
<th>Button</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>Raw Readings</td>
<td></td>
</tr>
</tbody>
</table>

Clicking the Raw Readings button displays the raw readings from the sensor. (See Figure 4.31a)
Figure 4.31a

All of the information and options on this screen are for advanced users only. Everything necessary to operate the LPU-2428 and the LPU-2428A Software is available through the regular menus.
• Totalization Menu

Figure 4.32

<table>
<thead>
<tr>
<th>App Function</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>Totalization</td>
<td>Totalization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totelization NO Reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reset</td>
</tr>
</tbody>
</table>

Totalization is a submenu available only when Flow is the selected Application/OutFunc. The sensor writes to two totalizers—one of which can be reset—and updates the totals to the LPU-2428A software in one minute increments. (See Figure 4.32)
Chapter 5: Hazardous Location Drawings and Certification

Intrinsically Safe Wiring Diagram

- Install in accordance with CEC/IEC articles 564, 525 and ISA API 26 Recommended Practice for the Installation of Intrinsically Safe Circuits.
- WARNING: EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN SWITCHED OFF OR AREA IS KNOWN TO BE NON-HAZARDOUS.
 Avertissement - NE PAS DÉBRANCHER L'ÉQUIPEMENT SI LA TENSION N'EST PAS ÉTEINT.
- WARNING - POTENTIAL ELECTROSTATIC CHARGING HAZARD - Clean only with a damp cloth.
 Avertissement - surface non-conductive du boîtier peuvent être touchées par MICRO non conducteurs . CLEAN avec un chiffon humide.
- WARNING: SUBSTITUTION OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY
 Avertissement: LA SUBSTITUTION DE COMPOSANTS PEUT COMPROMETTRE LA SÉCURITÉ INTRINSÈQUE.

Proprietary and Confidential
The diagram is the property of Automation Products Group, Inc. Local, regional, and may not be used, reproduced, published, or disclosed in whole or in part without written consent of the company. If accepted, it is subject to remain with buyer and may not be used in any way contrary to interest of seller, or the company.

APGm.
Automation Products Group, Inc.
888-575-7700

Hazardous Location Drawing
LPU-2426 & LPU-4428

Approval

APP-101 4-6-07
APP-102 4-6-07

APG

1025 West 1700 North
Logan, Utah USA

APG# 857797 125xxxx-xxxx 9002747 A2

Sheet 1 of 1
Installation in Class I Division 2 Groups C and D
Class I Zone 2 A ExnA II B

NON-HAZARDOUS AREA
Hazardous Location Wiring Diagram

LPU-2177 / LPU-4177 Ultrasonic Sensor (4-20mA Loop Powered)

LPU-240B / LPU-440B Ultrasonic Sensor (4-20mA Loop Powered)

Non-Incendive Wiring for Installation
Class I Division 2 Groups C and D, Max. Temp. 60°C

NON-HAZARDOUS AREA
Hazardous AREA

Certified Associated
Non-Incendive Field Wiring Apparatus

Vmax 2 Vac,
Ca 2 Cable + Cl
La 2 Cable + Li

WARNING - POTENTIAL ELECTROSTATIC CHARGING HAZARD -
Clean with only with a damp cloth
RECEPIENCE - surface non conductive as better prevent static
features per MEDA non conductive, do not use chlorine

DO NOT DISCONNECT WHILE CIRCUIT IS ALIVE.
UNLESS AREA IS KNOWN TO BE NON-HAZARDOUS.

displacement due to circuit est shock

1. Install in accordance with Section 1B of the CEC or Article 500 of the NEC.
2. CSA listed or NRTL/UL listed conduit seal at location A & B as
 required by Local Authority.
3. The cable is terminated to the sensor and runs continuously from the sensor
 through the Hazardous area and into the non-Hazardous area.
4. Electrical equipment connected into associated
 apparatus should not generate more than 250 V rms.
5. Tampering or replacement with non-factory components
 may adversely affect the safe use of the system.

APGHI
AUTOMATION PRODUCTS GROUP, INC.
Logan, Utah USA
Hazardous Installation Drawing
LPU-2177, LPU-4177, LPU-240B & LPU-440B

PAW
K. REID
12-10-04

APGHI
1039 West 1700 North
Logan, Utah USA
Hazardous Installation Drawing
LPU-2177, LPU-4177, LPU-240B & LPU-440B

PAW
K. REID
12-10-04
• CSA Certificate of Compliance

Certificate of Compliance

Certificate: 1911747
Project: 2386064
Issued to: Automation Products Group Inc
1025 West 1700 North
Logan, UT 84321
USA
Attention: Karl Reid

The products listed below are eligible to bear the CSA Mark shown with adjacent indicators 'C' and 'US' for Canada and US or with adjacent indicator 'US' for US only or without either indicator for Canada only.

PRODUCTS
CLASS 2258 82 - PROCESS CONTROL EQUIPMENT - For Hazardous Locations - Certified to US Standards
CLASS 2258 02 - PROCESS CONTROL EQUIPMENT - For Hazardous Locations

Class I, Division 2, Groups C and D, T6
Ex nA IIB T6; IP65
Class I, Zone 2; AEx nA IIB T6; IP65

LPU Series Ultrasonic Sensors, Models LPU-2127, LPU-4127, LPU-2428 and LPU 4428; Rated input 12 to 28Vdc; Outputs 4-20mA; Ambient temperature range -40°C to +60°C.

LOE Series Ultrasonic Sensors, Models LOE-2126, LOE-6126, and LOE-3136; Rated input 48VDC or 12 to 28Vdc, 200 mA containing two optically-coupled MOSFET solid-state relay outputs rated 1500 Vr.m.s isolation voltage; Ambient temperature range -40°C to +60°C.

Note:
1) The LOE Series shall be powered by a suitable certified Class 2 power supply.
Certificate: 1911747 Master Contract: 237484
Project: 2386064 Date Issued: April 29, 2011

CLASS 2258 04 - PROCESS CONTROL EQUIPMENT - Intrinsically Safe, Entity - For Hazardous Locations
CLASS 2258 84 - PROCESS CONTROL EQUIPMENT - Intrinsically Safe, Entity - For Hazardous Locations - Certified to US Standards
Class I, Division 1, Groups C and D, T3
Ex ia IIB, T3 (Canada); IP65
Class I, Zone 0; AEx ia IIB, T3 (USA); IP65

LPU-2428 and LPU-4428 ultrasonic sensors; Rated input 12 to 28VDC, Outputs 4-20mA, Ambient temperature range -40°C to +60°C. Entity Parameters Vmax = 28VDC, Imax = 130mA, Pt = 0.91W, Ci = 0nF, Li = 110µH, intrinsically safe when connected in accordance with Installation drawing 9002747.

APPLICABLE REQUIREMENTS

<table>
<thead>
<tr>
<th>CAN/CSA Standard</th>
<th>General Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>C22.2 No. 0-M91</td>
<td>- Canadian Electrical Code, Part II</td>
</tr>
<tr>
<td>C22.2 No.142-M1987</td>
<td>- Process Control Equipment Industrial Products</td>
</tr>
<tr>
<td>C22.2 No.157-92</td>
<td>- Intrinsically Safe and Non-Incendive Equipment for Use in Hazardous Locations</td>
</tr>
<tr>
<td>C22.2 No.213-M1987</td>
<td>- Non-incendive Electrical Equipment for Use in Class I, Division 2 Hazardous Locations Industrial Products</td>
</tr>
<tr>
<td>E60079-0-02</td>
<td>- Electrical Apparatus for Explosive Gas Atmospheres – Part 0: General Requirements</td>
</tr>
<tr>
<td>E60079-11-02</td>
<td>- Electrical Apparatus for Explosive Gas Atmospheres – Part 11: Intrinsic Safety "i"</td>
</tr>
<tr>
<td>E60079-15-02</td>
<td>- Electrical Apparatus for Explosive Gas Atmospheres - Part 15: Type of Protection "n"</td>
</tr>
<tr>
<td>C22.2 No. 60529-05</td>
<td>- Degrees of Protection Provided by Enclosures (IP Code)</td>
</tr>
<tr>
<td>508</td>
<td>- Industrial Control Equipment</td>
</tr>
<tr>
<td>913</td>
<td>- Intrinsically Safe Apparatus and Associated Apparatus for Use in Class I, II, and III, Division 1, Hazardous (Classified) Locations</td>
</tr>
</tbody>
</table>

DQD 507 Rev. 2009-09-01 Page: 2
<table>
<thead>
<tr>
<th>Certificate:</th>
<th>1911747</th>
<th>Master Contract:</th>
<th>237484</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project:</td>
<td>2386064</td>
<td>Date Issued:</td>
<td>April 29, 2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard/Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/ISA 12.12.01-2007</td>
<td>Nonincendive Electrical Equipment for Use in Class I and II, Division 2, and Class III Divisions 1 and 2 Hazardous (Classified) Locations</td>
</tr>
<tr>
<td>UL Standard 60079-0</td>
<td>Electrical Apparatus for Explosive Gas Atmospheres – Part 0: General Requirements</td>
</tr>
<tr>
<td>UL Standard 60079-11</td>
<td>Electrical Apparatus for Explosive Gas Atmospheres Part 11: Intrinsic Safety “i”</td>
</tr>
<tr>
<td>UL Standard 60079-15</td>
<td>Electrical Apparatus for Explosive Gas Atmospheres Part 15: Electrical Apparatus with Type of Protection “n”</td>
</tr>
<tr>
<td>IEC 60529</td>
<td>Degrees of Protection Provided by Enclosures (IP Code)</td>
</tr>
</tbody>
</table>

MARKINGS

The following markings are provided on CSA-Accepted (Class 7922-01, File number 99316) adhesive label stock Product Number 7871 manufactured by 3M Company, which is suitable for indoor or outdoor use on Plastic Group VII, at a maximum service temperature of 80°C or higher. The label stock shall be printed with one of the approved printer and ink combinations as specified in the manufacturers listing and the finished label is affixed to the housing.

- Manufacturer’s name, “Automation Products Group”, or CSA Master Contract Number “237484”, adjacent to the CSA Mark in lieu of Manufacturer’s name.
- Model number: as specified in the PRODUCTS section, above.
- Electrical ratings: as specified in the PRODUCTS section, above.
- Ambient temperature rating: as specified in the PRODUCTS section, above (may be abbreviated).
- Manufacturing date in MMYY format, or serial number, traceable to month of manufacture.
- The CSA Mark with “C” and “US” indicators, as shown on the Certificate of Conformity.
- Hazardous Location designation: as specified in the PRODUCTS section, above.
- Temperature Code: as specified in the PRODUCTS section, above (May appear on control drawing).
- Class I Division 1 additional Markings -
 - “Exia” followed by “IIB”
 - “INTRINSICALLY SAFE”
 - “WARNING – EXPLOSION HAZARD – SUBSTITUTION OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY” (Equivalent wording is acceptable).
 - “WARNING – TO PREVENT IGNITION OF FLAMMABLE OR COMBUSTIBLE ATMOSPHERES, DISCONNET POWER BEFORE SERVICING”;
 - “Install per Drawing 9002748” (or equivalent): as specified in the PRODUCTS section, above
- Class I Division 2 additional Markings –
 - “Ex nA” followed by “IIB”
 - “WARNING – DO NOT DISCONNECT EQUIPMENT UNLESS AREA IS KNOW TO BE NON-HAZARDOUS”.
 - “WARNING – POTENTIAL ELECTROSTATIC CHARGING HAZARD – SEE INSTRUCTIONS” (or equivalent).
Certificate: 1911747
Project: 2386064
Master Contract: 237484
Date Issued: April 29, 2011

• For the LPU Series Ultrasonic Sensors, the words “Reference installation drawing number 9002745” (or equivalent): as specified in the PRODUCTS section, above
• For the LOE Series Ultrasonic Sensors, the words “Reference installation drawing number 9003469” (or equivalent): as specified in the PRODUCTS section, above
• For the LOE Series Ultrasonic Sensors, the manual shall contain the following words: “WARNING – NONCONDUCTIVE SURFACE OF THE HOUSING MAY BE CHARGED BY NONCONDUCTIVE MEDIA, CLEAN WITH A DAMP CLOTH”

Note - Jurisdictions in Canada may require these markings to also be provided in French language. It is the responsibility of the manufacturer to provide bilingual marking, where applicable, in accordance with the requirements of the Provincial Regulatory Authorities. It is the responsibility of the manufacturer to determine this requirement and have bilingual wording added to the ‘Markings’.