MPX Magnetostrictive Level Sensors
User Manual

For The MPX-E, MPX-E Chemical, and MPX-R
Table of Contents

Introduction ..iii

Warranty and Warranty Restrictions ... iv

Chapter 1: Specifications and Options ... 1
 Dimensions ... 1-3
 Specifications ... 4
 Model Number Configurator .. 5-7
 Electrical Connections and System Wiring Diagrams .. 8-9

Chapter 2: Installation and Removal Procedures and Notes 10
 Tools Needed .. 10
 Physical Installation Notes .. 10
 Physical Installation Instructions ... 11
 Electrical Installation .. 11
 Removal Instructions .. 12

Chapter 3: Programming ... 12
 Modbus Programming .. 12
 Modbus Programming with RST-6001 and APG Modbus Software 12
 4-20 mA Programming with RST-4100 and APG Modbus Software 13
 Modbus Register Lists For MPX-E/R4 ... 13-14
 MPX-E/R4 Modbus Sensor Parameters ... 15-19
 APG Modbus Register Lists for MPX-E/R2 and MPX-E/R3 19-20
 MPX-E/R2 and MPX-E/R3 APG Modbus Sensor Parameters 21-25
 MPX-E/R Application Type Parameters .. 26-30

Chapter 4: Maintenance ... 31
 General Care .. 31
 Repair and Returns ... 31

Chapter 5: Hazardous Location Installation and Certification 32
 Hazardous Location and Non-Incendive Wiring Diagram 32
 CSA Certificate of Compliance ... 33-35
Introduction

Thank you for purchasing an MPX series magnetostrictive level sensor from APG. We appreciate your business and your trust. Please take a few minutes to familiarize yourself with your MPX and this manual.

The MPX level sensor provides highly accurate and repeatable level readings in a wide variety of liquid level measurement applications. It is certified for installation in hazardous areas in the US and Canada by CSA for Class I, Division 1 & 2 and Class I, Zones 1 & 2 environments. The MPX-R's large, buoyant, and robust floats allow it to be used in harsh applications where fouling or buildup might otherwise be of concern. The smaller, lighter weight floats of the MPX-E allow it to be used in applications where space is limited. The MPX-E Chemical has a chemical resistant sleeve, allowing for use in corrosive, acidic, and marine environments.

Reading your label

Every APG instrument comes with a label that includes the instrument's model number, part number, and serial number. Please ensure that the part number on your label matches your order. The following electrical ratings and approvals are also listed on the label. Please refer to the Certificate of Compliance at the back of this manual for further details.

Electrical ratings

Rated 12 - 24 VDC, 4-20 mA, or 80 mA
Class I, Division 1 & 2, Groups C, and D T4 (Ta 85°C)
Ex d IIB T4 (Ta 85°C)
Ex nA IIB T4 (Ta 85°C)
Class I, Zone 1; AEx dB IIB T4 (Ta 85°C)
Class I, Zone 2; AEx na IIB T4 (Ta 85°C)

Non-Incendive Wiring Requirements: \(V_{\text{max}} = 28 \text{VDC}, I_{\text{max}} = 200 \text{mA}, C = 0 \text{nF}, L = 0 \mu\text{H} \)

\[\text{IMPORTANT: MPX level sensor MUST be installed according to drawing 9003468 on page 32 to meet listed approvals. For Class I, Division 1 and Class I, Zone 1 approvals, seal required within 18 inches of the enclosure. Faulty installation will invalidate all safety approvals and ratings.} \]
Warranty and Warranty Restrictions

This product is covered by APG’s warranty to be free from defects in material and workmanship under normal use and service of the product for 24 months. For a full explanation of our Warranty, please visit https://www.apgsensors.com/about-us/terms-conditions. Contact Technical Support to receive a Return Material Authorization before shipping your product back.

Scan the QR code below to read the full explanation of our Warranty on your tablet or smartphone.
Chapter 1: Specifications and Options

• Dimensions

MPX-E Sensor and Float Dimensions

Note: For dual dimensions, large housing dimensions are above small housing dimensions.

S1 Dead-Band (from Zero Reference to Float Ref.)

Min. 12” Max. 153”

S2 Dead-Band (from Float Ref. to bottom of stem)

A & B

Float Ref. S1=6” S2=1.4”

2.00”

2.06”

C & D

Float Ref. S1=6” S2=1.1”

1.38”

E

Float Ref. S1=6” S2=2.7”

1.87”

1.78”

F

Float Ref. S1=6” S2=1.5”

2.20”

1.47”

G

Float Ref. S1=6” S2=2.38”

1.88”

1.91”

3/4” NPT
1/2” NPT

Housing Connection Location

Ø 0.27”

3/4” NPT
1/2” NPT

Ground Screw

S1=6”
S2=2.38”

G

S1=6”
S2=1.4”

A & B

Float Options

S1=6”
S2=2.27”

S1=6”
S2=1.1”

S1=6”
S2=2.27”

S1=6”
S2=1.5”
MPX-E Chemical Sensor and Float Dimensions

Note:
for dual dimensions, large housing dimensions are above small housing dimensions.
MPX-R Sensor and Float Dimensions

3/4" NPT

4.94"

6.84" - 6.97"

4.21"

1.90"

S1 Dead-Band (from Zero Reference to Float Ref.)

Min. 48" Max. 300"

S2 Dead-Band (from Float Ref. to bottom of stem)

U & V

L & J

I & J

W & X

Y & Z

S & T

Ø 0.27"

Float Ref.

S1=12.25"

S2=4.25"

Float Ref.

S1=10.63"

S2=6"

Float Ref.

S1=12.25"

S2=4.25"

Float Ref.

S1=10"

S2=6.5"

Float Ref.

S1=12.25"

S2=4.25"

Float Ref.

S1=12.25"

S2=4.25"

Float Ref.

S1=10"

S2=6.5"

Float Ref.

S1=10"

S2=6.5"
• **Specifications**

Performance
- Resolution
 - 4-20 mA: 14 bit DAC (1 mm)
 - Modbus: 0.04 in. (1 mm)
- Accuracy
 - Greater of ±0.05% of FS or 1 mm
 - Accuracy: ±1°C

Environmental
- Probe Operating Temperature: -40° to 85° C (-40° to 185° F)
- Storage Temperature: -45° to 90° C (-49° to 194° F)
- Enclosure Protection: IP65
- Maximum Operating Pressure: MPX-E Chem Float: 30 PSIA @ 21° C (70° F)

Electrical
- Supply Voltage: 12-24 VDC at sensor
- Current Draw:
 - Modbus (RS-485): 25 mA (typical, MPX-E)
 - 28 mA (typical, MPX-R)
 - 4-20 mA: 4-22 mA single / 8-44 mA dual (typical)
- Protection:
 - Reverse Polarity
 - Surge (Output 4)

Materials of Construction
- Housing: Cast aluminum, epoxy coated
- Stem:
 - MPX-E: 0.5” Ø 316L SS
 - MPX-E Chemical: 0.67” Ø PVDF (rigid)
 - MPX-R: 1” Ø 316L SS
 - MPX-E/MPX-R: 316L SS
 - MPX-E Chemical: PVDF
- Mounting: Aluminum with Neoprene bushing
- Compression Fitting (slide):

Connectivity
- Output:
 - Modbus RTU (RS-485), optional temperature
 - 2 wire, loop-powered 4-20 mA
 - 3 wire, loop-powered dual 4-20 mA
- 4-20 mA Set points:
 - 4 mA
 - 20 mA

Programming
- RS-485
 - Optional RST-6001 USB-to-RS-485 converter
- 4-20 mA
 - Optional RST-4100 programming module
Model Number Configurator

Model Number: MPX - _E_ _____ _____ - _____ _____ - _____ _____ _____ __B__ - _____ - _____

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Stem Type</td>
<td>B. Output</td>
<td>C. Housing Type</td>
<td>D. Float 1 (Top Float)</td>
<td>E. Float 2 (optional)</td>
<td>F. Mounting Type</td>
<td>G. Mounting Size</td>
<td>H. Mounting Connection</td>
<td>I. Stem/Finish Material</td>
<td>K. Optional Temperature Sensor</td>
<td></td>
</tr>
<tr>
<td>□ E</td>
<td>0.5 in. diameter 316L SS</td>
<td>□ 2</td>
<td>Single float, 4-20 mA (loop powered, 2 wire)</td>
<td>□ A</td>
<td>316L SS Round (0.65 SG)</td>
<td>□ N</td>
<td>None</td>
<td>□ 1.5</td>
<td>1.5 in. (welded or slide connection)</td>
<td>□ W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ 3</td>
<td>Dual float, 4-20 mA (loop powered, 3 wire)</td>
<td>□ B</td>
<td>316L SS Round (0.92 SG)</td>
<td>□ B</td>
<td>316L SS Round (0.92 SG)</td>
<td>□ 2</td>
<td>2 in. (welded or slide connection)</td>
<td>□ S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ 4</td>
<td>Modbus RTU, surge protection</td>
<td>□ C</td>
<td>316L SS Cylindrical (0.65 SG)</td>
<td>□ E</td>
<td>Buna-N (0.5 SG)</td>
<td>□ 3</td>
<td>3 in. (slide connection only)</td>
<td>□ N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□ D</td>
<td>316L SS Cylindrical (0.92 SG)</td>
<td>□ F</td>
<td>316 SS 3A Cylindrical (0.5 SG)</td>
<td>□ N</td>
<td>None</td>
<td>□ T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□ E</td>
<td>Buna-N (0.5 SG)</td>
<td>□ G</td>
<td>Kynar Cylindrical (0.66 SG)</td>
<td>□ N</td>
<td>None</td>
<td>□ N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□ F</td>
<td>316 SS 3A Cylindrical (0.5 SG)</td>
<td>□ G</td>
<td>Kynar Cylindrical (0.66 SG)</td>
<td>□ N</td>
<td>None</td>
<td>□ N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□ G</td>
<td>Kynar Cylindrical (0.66 SG)</td>
<td>□ N</td>
<td>Kynar Cylindrical (0.66 SG)</td>
<td>□ N</td>
<td>None</td>
<td>□ N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□ N</td>
<td>None</td>
<td>□ B</td>
<td>316L SS Round (0.92 SG)††</td>
<td>□ N</td>
<td>None</td>
<td>□ N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□ B</td>
<td>316L SS Round (0.92 SG)††</td>
<td>□ B</td>
<td>316L SS Round (0.92 SG)††</td>
<td>□ N</td>
<td>None</td>
<td>□ N</td>
</tr>
</tbody>
</table>

Note: This option is standard

†Note: Small housing only available with Modbus RTU (Output 4)
††Note: Float 2 option B requires Float 1 option A
Model Number: MPX - E - - - - - - P - 2 W - N - - -
A B C D E F G H I J K

A. Stem Type
□ E 0.5 in. diameter 316L SS

B. Output
□ 2 Single float, 4-20 mA (loop powered, 2 wire)
□ 4 Modbus RTU, surge protection

C. Housing Type
All Housing Die-cast Aluminum, IP65, Blue
□ ▲ Large Housing
□ A Small Housing†

D. Float 1
□ K1/H 3.5h x 2d in. PVDF (0.65 SG Max / 0.94 SG)

E. Float 2
□ N None
□ H 3.5h x 2d in. PVDF (0.94 SG)

F. Mounting Type
□ P NPT Plug

G. Mounting Size
□ 2 Size 2

H. Mounting Connection
□ W Welded (fixed)

I. Stem/Finish Material
□ N 0.67” diameter PVDF Sleeve

J. Total Stem Length in Inches
□ __ Min. 12 in. - Max. 153 in. *

K. Optional Temperature Sensor
MPX-E4
□ N None
□ T Stem RTD, 1kΩ, 6 in. from bottom of probe

▲Note: This option is standard
†Note: Small housing only available with Modbus RTU (Output 4)

Note: The Kynar stem is susceptible to thermal expansion when the process temperature exceeds 73°F / 23°C. This expansion can be calculated as follows: Expansion = (Max Process Temperature (°F) - 73).000108 * Kynar Stem Length). This is the distance that must be left between the end of the Kynar stem and the tank bottom at the maximum process temperature. Please account for this expansion by reducing the stem length to allow for this gap when installed. The gap is zero if the process temperature is less than or equal to 73 °F.
Model Number: MPX - _R_ _____ _____ - _____ _____ - _____ _____ _____ _B_ - _____ - _____

A. Stem Type
☐ R 1 in. diameter 316L SS

B. Output
☐ 2 Single float, 4-20 mA (loop powered, 2 wire)
☐ 3 Dual float, 4-20 mA (loop powered, 3 wire)
☐ 4 Modbus RTU, surge protection

C. Housing Type
All Housing Die-cast Aluminum, IP65, Blue
☐ ___ Large Housing

D. Float 1 (Top Float)
☐ Z/Y 5.5h x 3d in. Red Polyurethane (0.65/0.94 SG)
☐ X/W 5 in. Round 316L SS (0.52/0.92 SG)
☐ V/U 6h x 3d in. Oval 316L SS (0.58/0.94 SG)
☐ T/S 3 in. Round 316L SS (0.60/0.94 SG)
☐ M/L 5.5h x 2d in. Red Polyurethane (0.57/0.94 SG)
☐ J/I 5h x 3d in. Oval Titanium (0.60/0.94 SG)
☐ N None

E. Float 2 (optional)
☐ N None
☐ Y 5.5h x 3d in. Blue Polyurethane (0.94 SG)
☐ W 5 in. Round 316L SS (0.92 SG)
☐ U 6h x 3d in. Oval 316L SS (0.94 SG)
☐ S 3 in. Round 316L SS (0.94 SG)
☐ L 5.5h x 2d in. Blue Polyurethane (0.94 SG)
☐ I 5h x 3d in. Oval Titanium (0.94 SG)

F. Mounting Type
☐ P NPT Plug 150#
☐ N None

G. Mounting Size
☐ 2 2 in. (welded or slide connection)
☐ 3 3 in. (slide connection only)
☐ N None

H. Mounting Connection
☐ W Welded (fixed)
☐ S Slide with Compression Fitting (adjustable)

I. Stem/Finish Material
☐ B 316L SS

J. Total Stem Length in Inches
☐ ___ Min. 48 in. - Max. 378 in.

K. Optional Temperature Sensor(s)
MPX-R4
☐ N None
☐ T Stem RTD, 1kΩ, 6 in. from bottom of probe

▲ Note: This option is standard
• Electrical Connections and System Wiring Diagrams

Modbus System Wiring

Diagram showing electrical connections for Modbus System Wiring.

Modbus System Wiring with RST-6001

Diagram showing electrical connections for Modbus System Wiring with RST-6001.

Note: Earth Ground terminal is factory connected to internal housing ground lug.

IMPORTANT: Refer to Chapter 5 for Hazardous Location and Non-Incendive Wiring diagram.

IMPORTANT: For surge protection on MPX-E4 or -R4, either connect the grounding screw (see pages 1-3) to an earth ground, or ensure that the tank mounting of the MPX is grounded.
4-20 mA Loop Wiring

4-20 mA Single Float Loop Wiring (MPX-E2 and MPX-R2 Series)

4-20 mA Dual Float Loop Wiring (MPX-E3 and MPX-R3 Series)

IMPORTANT: Refer to Chapter 5 for Hazardous Location and Non-Incendive Wiring diagram.

4-20 mA Programming Wiring

Programming configuration is for programming ONLY. After programming, sensor must be reintegrated to 4-20 mA loop for proper system operation.

USB to computer with APG Modbus software

NOTE: For MPX-E3 & MPX-R3 series sensors, Vdc from power source must be connected to Output1 on sensor for correct sensor programming.
Chapter 2: Installation and Removal Procedures and Notes

• Tools Needed

You will need the following tools to install your MPX level sensor:

• Wrench sized appropriately for MPX mounting
• Wrench sized appropriately for conduit connections
• Flat-head screwdriver for wire terminals
• Channellock pliers for tightening compression fitting
• 3/32” hex Allen wrench for 1-piece MPX-E float stops
• 1/8” hex Allen wrench for 1-piece MPX-R float stops
• 3/16” hex Allen wrench for 2-piece MPX-R float stops

• Physical Installation Notes

The MPX should be installed in an area—in indoors or outdoors—which meets the following conditions:

• Ambient temperature between -40°C and 85°C (-40°F to +185°F)
• Relative humidity up to 100%
• Altitude up to 2000 meters (6560 feet)
• IEC-664-1 Conductive Pollution Degree 1 or 2
• IEC 61010-1 Measurement Category II
• No chemicals corrosive to stainless steel (such as NH₃, SO₂, Cl₂ etc.) (Not applicable to plastic-type stem options.)
• Ample space for maintenance and inspection

Additional care must be taken to ensure:

• The probe is located away from strong magnetic fields, such as those produced by motors, transformers, solenoid valves, etc.
• The medium is free from metallic substances and other foreign matter.
• The probe is not exposed to excessive vibration.
• The float(s) fit through the mounting hole. If the float(s) does/do not fit, it/they must be mounted on the stem from inside the vessel being monitored.
• The float(s) is/are oriented properly on the stem (See Figure 2.1). MPX-E floats will be installed by the

DANGER: WARNING -- POTENTIAL ELECTROSTATIC CHARGING HAZARD - CLEAN ONLY WITH A DAMP CLOTH;
AVERTISSEMENT -- DANGER DE CHARGE ELECTROSTATIQUE POTENTIEL - NETTOYER SEULEMENT AVEC UN CHIFFON HUMIDE.

IMPORTANT: MPX level sensor MUST be installed according to drawing 9003468 on page 32 to meet listed approvals. For Class I, Division 1 and Class I, Zone 1 approvals, seal required within 18 inches of the enclosure. Faulty installation will invalidate all safety approvals and ratings.
• **Physical Installation Instructions**

 - If your sensor's stem and floats fit through the mounting hole, carefully lower the assembly into the vessel, then secure the sensor to the vessel.
 - If the floats do not fit, mount them on the stem from inside the vessel being monitored. Then secure the sensor to the vessel.
 - For sensors with float stops, refer to the assembly drawing included with the sensor for float stop installation locations.

IMPORTANT: WARNING -- A SEAL SHALL BE INSTALLED WITHIN 18 inches OF THE ENCLOSURE; AVERTISSEMENT -- UN SCELLEMENT DOIT ETRE INSTALLÉ A MOINS DE 18 inches DU BOITIER.

• **Electrical Installation**

 - Remove the housing cover of your MPX.
 - Feed system wires into MPX through 3/4" NPT conduit openings. Fittings must be UL/CSA Listed for CSA installation and IP65 Rated or better.
 - Connect wires to MPX terminals. Use crimped ferrules on wires, if possible.
 - Replace the housing cover.
 - For surge protection on MPX-E4 and MPX-R4 models, either connect the grounding screw (see dimensions on page 1-3) to an earth ground, or ensure that tank mounting of MPX is grounded.

See Electrical Connections and System Wiring Diagrams (pages 8-9) for Modbus and 4-20 mA wiring examples.
Removal Instructions

Removing your MPX level sensor from service should be done with care.

- If the floats on your sensor fit through the mounting hole, carefully lift the entire sensor assembly out of and away from the vessel.
- If the floats on your sensor do not fit through the mounting hole, they will need to be removed from the stem before the sensor can be removed. Be sure to drain the vessel being monitored to allow access to the floats and stem for removal.
- Clean the stem and floats of any build up or debris and inspect for damage.
- Store your sensor in a dry place, at a temperature between -45° and 90° C (-49° and 194° F).

Chapter 3: Programming

Modbus Programming

MPX-E4 and MPX-R4 series sensors use standard Modbus RTU protocol (RS-485). The sensors can only operate as client devices. Sensor default transmission settings are 9600 Baud, 8 Bits, 1 Stop Bit, No Parity, and require a minimum delay of 300 ms between transactions. See MPX-E/R4 Modbus Register Lists on pages 13 and 14.

NOTE: For more information about Modbus RTU, please visit www.modbus.org.

NOTE: MPX-E1 and MPX-R1 legacy models have the same Modbus settings and registers as MPX-E4 and MPX-R4.

Modbus Programming with RST-6001 and APG Modbus Software

An APG RST-6001 Modbus Controller can be used in tandem with APG Modbus to program and control up to 20 MPX-E/R1 (legacy models) or MPX-E/R4 series sensors. Through APG Modbus, you can monitor the raw readings from the sensor, configure the data for distance, level, volume, or weight, and enter measurements for a strapping chart. See MPX-E/R4 Modbus Register Lists on pages 13 and 14.

NOTE: For APG Modbus programming instructions, or to download APG Modbus software, please visit www.apgsensors.com/support.
• 4-20 mA Programming with RST-4100 and APG Modbus Software

An APG RST-4100 Programming Module can be used in tandem with APG Modbus to program a single MPX-E2/3 or MPX-R2/3 series sensor. Through APG Modbus, you can configure the 4 mA and 20 mA output setpoints and calibration settings. If your monitoring equipment (PLC, etc.) can be configured to interpret the 4-20 mA output(s) of the MPX as volume, then the MPX can be configured accordingly via APG Modbus. See MPX-E/R2 & MPX-E/R3 Modbus Register Lists on pages 19 and 20.

However, the RST-4100 is not designed to be used for continuous monitoring of a sensor. After programming your MPX sensor, the RST-4100 must be removed and the wiring returned to normal. See 4-20 mA Loop Wiring and 4-20 mA Programming Wiring on page 9.

• Modbus Register Lists for MPX-E/R4

Input Registers (0x04)

<table>
<thead>
<tr>
<th>Register</th>
<th>Returned Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>30299</td>
<td>Model Type</td>
</tr>
<tr>
<td>30300</td>
<td>Top Distance (raw float reading, in mm, unsigned)</td>
</tr>
<tr>
<td>30301</td>
<td>Bottom Distance (raw float reading, in mm, unsigned)</td>
</tr>
<tr>
<td>30302</td>
<td>Temperature Reading (in °C, signed)</td>
</tr>
<tr>
<td>30303-30304</td>
<td>Top Calculated (level, volume, etc., in selected Units)</td>
</tr>
<tr>
<td>30305-30306</td>
<td>Bottom Calculated (level, volume, etc., in selected Units)</td>
</tr>
<tr>
<td>30307</td>
<td>Version</td>
</tr>
</tbody>
</table>

⚠️ NOTE: The Calculated Readings will be returned without a decimal place. In order to obtain the true result, the Decimal Place setting must be taken into account.

⚠️ NOTE: Input Registers 30300 and 30301 also display Loss of Signal error codes. See Application Type (Holding Register 40402).
Holding Registers (0x03)

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>1, 2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal Place</td>
<td>0, 1, 2, 3</td>
</tr>
<tr>
<td>40405</td>
<td>†Max Distance</td>
<td>0 to 11,278 mm</td>
</tr>
<tr>
<td>40406</td>
<td>Full Distance</td>
<td>0 to 10,364 mm</td>
</tr>
<tr>
<td>40407</td>
<td>Empty Distance</td>
<td>0 to 11,278 mm</td>
</tr>
<tr>
<td>40408</td>
<td>†Sensitivity</td>
<td>0 to 100</td>
</tr>
<tr>
<td>40409</td>
<td>†Pulses</td>
<td>0 to 20</td>
</tr>
<tr>
<td>40410</td>
<td>†Blanking</td>
<td>0 to 10,364 mm</td>
</tr>
<tr>
<td>40411</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>40412</td>
<td>Averaging</td>
<td>1 to 31</td>
</tr>
<tr>
<td>40413</td>
<td>Filter Window</td>
<td>0 to 10,364 mm</td>
</tr>
<tr>
<td>40414</td>
<td>Out of Range Samples</td>
<td>1 to 255</td>
</tr>
<tr>
<td>40415</td>
<td>Sample Rate</td>
<td>10 to 1,000 msec.</td>
</tr>
<tr>
<td>40416</td>
<td>†Multiplier</td>
<td>1 to 1,999 (1000 = 1.000)</td>
</tr>
<tr>
<td>40417</td>
<td>†Offset</td>
<td>-10,364 to 10,364 mm</td>
</tr>
<tr>
<td>40418</td>
<td>†Pre filter</td>
<td>0 to 10,364 mm</td>
</tr>
<tr>
<td>40419</td>
<td>†Noise limit</td>
<td>0 to 255</td>
</tr>
<tr>
<td>40420</td>
<td>Temperature Select</td>
<td>0 to 8</td>
</tr>
<tr>
<td>40421</td>
<td>RTD Offset (°C)</td>
<td>-100 to 100</td>
</tr>
<tr>
<td>40422</td>
<td>†Float Window</td>
<td>0 to 1,000 mm 0=1 float</td>
</tr>
<tr>
<td>40423</td>
<td>1st Float Offset</td>
<td>-10,364 to 10,364</td>
</tr>
<tr>
<td>40424</td>
<td>2nd Float Offset</td>
<td>-10,364 to 10,364</td>
</tr>
<tr>
<td>40425</td>
<td>†Gain Offset</td>
<td>0 to 255</td>
</tr>
<tr>
<td>40426</td>
<td>4 mA Set Point</td>
<td>NA*</td>
</tr>
<tr>
<td>40427</td>
<td>20 mA Set Point</td>
<td>NA*</td>
</tr>
<tr>
<td>40428</td>
<td>4 mA Calibration</td>
<td>NA*</td>
</tr>
<tr>
<td>40429</td>
<td>20 mA Calibration</td>
<td>NA*</td>
</tr>
<tr>
<td>40430</td>
<td>t1d</td>
<td>NA*</td>
</tr>
<tr>
<td>40431</td>
<td>t1w</td>
<td>NA*</td>
</tr>
<tr>
<td>40432</td>
<td>t1t</td>
<td>NA*</td>
</tr>
<tr>
<td>40433</td>
<td>t2d</td>
<td>NA*</td>
</tr>
<tr>
<td>40434</td>
<td>t2w</td>
<td>NA*</td>
</tr>
<tr>
<td>40435</td>
<td>t2t</td>
<td>NA*</td>
</tr>
<tr>
<td>40436-40437</td>
<td>Parameter 1 Data</td>
<td>0 to 1,000,000 mm</td>
</tr>
<tr>
<td>40438-40439</td>
<td>Parameter 2 Data</td>
<td>0 to 1,000,000 mm</td>
</tr>
<tr>
<td>40440-40441</td>
<td>Parameter 3 Data</td>
<td>0 to 1,000,000 mm</td>
</tr>
<tr>
<td>40442-40443</td>
<td>Parameter 4 Data</td>
<td>0 to 1,000,000 mm</td>
</tr>
<tr>
<td>40444-40445</td>
<td>Parameter 5 Data</td>
<td>0 to 1,000,000 mm</td>
</tr>
</tbody>
</table>

*These registers are not used by the MPX-E4 or -R4, even though they are labeled in the APG Modbus software.

†Setting is factory calibrated. Do not adjust.
• **MPX-E/R4 Modbus Sensor Parameters**

40401 - Units

Determines the units of measure for the calculated reading when Application Type is set to 0, 1, or 7.

- 1 = Feet
- 2 = Inches
- 3 = Meters

40402 - Application Type

Determines the type of Calculated Reading (Input Register 30303-04 and 30305-06) performed by the sensor and associated Loss of Signal Error Code.

- 0 = Distance
- 1 = Level
- 2 = Standing Cylindrical Tank with or without Hemispherical Bottom
- 3 = Standing Cylindrical Tank with or without Conical Bottom
- 4 = Standing Rectangular Tank with or without Chute Bottom
- 5 = Horizontal Cylindrical Tank with or without Spherical Ends
- 6 = Spherical Tank
- 7 = Pounds (Linear Scaling)
- 8 = N/A
- 9 = Vertical Oval Tank
- 10 = Horizontal Oval Tank
- 11 = Strapping Chart

See MPX-E/R Application Type Parameters pages 26-30.

For Output 4, Loss of Signal Error Codes are dependent on Application Type. Loss of Signal for Application Type 0 (Distance) is Max Distance (Holding Register 40405). For all other Application Types, Loss of Signal is 0.

40403 - Volume Units

Determines the units of measure for the calculated reading when Application Type is set to 2 - 6 or 9 - 11.

- 1 = Feet\(^3\)
- 2 = Million Feet\(^3\)
- 3 = Gallons
- 4 = Meters\(^3\)
- 5 = Liters
- 6 = Inches\(^3\)
- 7 = Barrels
40404 - Decimal Place

Determines the number of decimal places included in the Calculated Reading(s). The Calculated Reading will always be returned as a whole number.

For example, a Calculated Reading of 1126.658 (gallons, ft³, etc.) will be returned as follows:
- Decimal Place = 0 Volume = 1127 (rounded to nearest whole number)
- Decimal Place = 1 Volume = 11267 (divide by 10 to get true result)
- Decimal Place = 2 Volume = 112666 (divide by 100 to get true result)
- Decimal Place = 3 Volume = 1126658 (divide by 1000 to get true result)

40405 - Maximum Distance (Factory Calibrated)

Sets the distance (beginning from the Zero Reference) to the point where the sensor will stop looking for float signals, usually the bottom of the stem. A float beyond the Maximum Distance value will not be detected.

40406 - Full Distance

Sets the positive distance (beginning from the sensor Zero Reference) to the point where the monitored vessel is considered full.

40407 - Empty Distance

Sets the positive distance (beginning from the Zero Reference) to the point where the monitored vessel is considered empty (usually the bottom of the stem).

40408 - Sensitivity (Factory Calibrated)

Sets the level of gain that is applied to the returning float signal.

40409 - Pulses (Factory Calibrated)

Controls the duration of the signal being sent down the magnetostrictive wire.

40410 - Blanking (Factory Calibrated)

Sets the blanking distance, which is the zone from the Zero Reference of the sensor to the point from which the first signal will be valid. Signals from a float in the blanking area will be ignored.
40412 - Averaging

Sets the number of qualified received float signals to average for the raw reading. Qualified received signals are placed in a first-in, first-out buffer, the contents of which are averaged for the raw reading. The larger the number of qualified received signals being averaged, the smoother the reading will be, and the slower the reading will be to react to quickly changing levels.

40413 - Filter Window

Determines the physical range (0 - 10,364 mm) of qualified received signals, based on the current raw reading. Signals beyond the +/- Filter Window range of the current reading will not qualify unless the average moves. Signals outside the extents of the Filter Window are written to the Out of Range samples buffer (Holding Register 40414). See Figure 3.1.

Example:
- Window = 300 mm
- Out of Range Samples = 10

<table>
<thead>
<tr>
<th>Samples are rejected within this area unless they persist for 10 consecutive samples</th>
<th>All samples are accepted within this area</th>
<th>Samples are rejected within this area unless they persist for 10 consecutive samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Reading</td>
<td>Current value of Distance</td>
<td>Max. Reading</td>
</tr>
</tbody>
</table>

Figure 3.1

40414 - Out of Range Samples

Sets the number of consecutive samples outside the Filter Window (Holding Register 40413) necessary to automatically adjust the current reading and move the Filter Window.

40415 - Sample Rate

Sets the update rate of the sensor (between 10 - 1000 ms). Shorter time delays allow for quicker sensor response times to changing levels. Typical setting is 200 ms. Settings under 200 ms are not recommended.

40416 - Multiplier (Factory Calibrated)

Calibrates the distance reading span. The Multiplier is shown by the values 1 - 1999, but these values are understood to represent 0.001 - 1.999. The default of 1000 (i.e. 1.000) is used for most applications.

40417 - Offset (Factory Calibrated)

Sets the Zero Reference of the sensor, the point from which the calculated distance is measured.
40418 - Pre filter

Defines the physical range (0 - 10,364 mm) of the start up (pre-filter) window. Four sample readings must be found within the Pre filter window for the MPX sensor to successfully start up. This register is used for factory diagnostics only.

40419 - Noise limit

Sets the limit for number of signals (0-255) outside the Pre filter range for the MPX at start up. If the Noise Limit is reached before four readings register within the Pre filter window, the MPX will not start up. This register is used for factory diagnostics only.

40420 - Temperature Select

Selects the temperature sensor reading to be displayed in Input Register 30302.

MPX-E/R4 sensors are limited to a single RTD sensor in the stem. Only options 0 and 8 work for the MPX-E/R4.

- 0 = RTD
- 1 = Digital Temperature Sensor A
- 2 = Digital Temperature Sensor B
- 3 = Digital Temperature Sensor C
- 4 = Digital Temperature Sensor D
- 5 = Digital Temperature Sensor E
- 6 = Digital Temperature Sensor F
- 7 = Digital Temperature Sensor G
- 8 = N/A

NOTE: MPX-E1 and MPX-R1 legacy models will only work with option 0.

40421 - RTD Offset C°

Calibrates the RTD temperature sensor.

40422 - Float Window (Factory Calibrated)

Sets the distance (0 - 1000 mm) between the first (i.e. top) float and the point at which the sensor will begin looking for the second (bottom) float. 0 indicates a single float.
40423 - 1st Float Offset

Used to calibrate top float reading (-10,364 - 10,364 mm). Differences in fluid specific gravity can change the level at which a float rests in the liquid. Use this parameter to match probe reading to confirmed liquid level.

40424 - 2nd Float Offset

Used to calibrate bottom float reading (-10,364 - 10,364 mm). Differences in fluid specific gravity can change the level at which a float rests in the liquid. Use this parameter to match probe reading to confirmed liquid level.

40425 - Gain Offset (Factory Calibrated)

Used to move the centerline of the float response signal to optimize signal strength (0 - 255).

• APG Modbus Register Lists for MPX-E/R2 and MPX-E/R3

Input Registers (0x04)

<table>
<thead>
<tr>
<th>Register</th>
<th>Returned Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>30299</td>
<td>Model Type</td>
</tr>
<tr>
<td>30300</td>
<td>Top Distance (raw float reading, in mm, unsigned)</td>
</tr>
<tr>
<td>30301</td>
<td>Bottom Distance (raw float reading, in mm, unsigned)</td>
</tr>
<tr>
<td>30302</td>
<td>Temperature Reading (in °C, signed)</td>
</tr>
<tr>
<td>30303-30304</td>
<td>Top Calculated (level, volume, etc., in selected Units)</td>
</tr>
<tr>
<td>30305-30306</td>
<td>Bottom Calculated (level, volume, etc., in selected Units)</td>
</tr>
<tr>
<td>30307</td>
<td>Version</td>
</tr>
</tbody>
</table>

NOTE: Input Register values for MPX-E/R2 and MPX-E/R3 are only visible while programming via the RST-4100.

NOTE: Input Registers 30300 and 30301 also display Loss of Signal error codes. See Fail Safe (Holding Register 40411).
Holding Registers (0x03)

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247*</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>0, 1, 2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>1, 2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal Place</td>
<td>0, 1, 2, 3*</td>
</tr>
<tr>
<td>40405</td>
<td>†Max Distance</td>
<td>0 to 10,364 mm</td>
</tr>
<tr>
<td>40406</td>
<td>Full Distance</td>
<td>0 to 10,364 mm</td>
</tr>
<tr>
<td>40407</td>
<td>Empty Distance</td>
<td>0 to 10,364 mm</td>
</tr>
<tr>
<td>40408</td>
<td>†Sensitivity</td>
<td>0 to 100</td>
</tr>
<tr>
<td>40409</td>
<td>†Pulses</td>
<td>0 to 20</td>
</tr>
<tr>
<td>40410</td>
<td>†Blanking</td>
<td>0 to 10,364 mm</td>
</tr>
<tr>
<td>40411</td>
<td>Fail Safe</td>
<td>0 = Disable, 1 = 3.8 mA, 2 = 22 mA</td>
</tr>
<tr>
<td>40412</td>
<td>Averaging</td>
<td>1 to 31</td>
</tr>
<tr>
<td>40413</td>
<td>Filter Window</td>
<td>0 to 10,364 mm</td>
</tr>
<tr>
<td>40414</td>
<td>Out of Range Samples</td>
<td>1 to 255</td>
</tr>
<tr>
<td>40415</td>
<td>Sample Rate</td>
<td>10 to 1,000 msec.</td>
</tr>
<tr>
<td>40416</td>
<td>†Multiplier</td>
<td>1 to 1,999 (1000 = 1.000)</td>
</tr>
<tr>
<td>40417</td>
<td>†Offset</td>
<td>-10,364 to 10,364 mm</td>
</tr>
<tr>
<td>40418</td>
<td>†Pre filter</td>
<td>0 to 10,364 mm</td>
</tr>
<tr>
<td>40419</td>
<td>†Noise limit</td>
<td>0 to 255</td>
</tr>
<tr>
<td>40420</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>40421</td>
<td>RTD Offset (°C)</td>
<td>-100 to 100</td>
</tr>
<tr>
<td>40422</td>
<td>†Float Window</td>
<td>0 to 1,000 mm 0=1 float</td>
</tr>
<tr>
<td>40423</td>
<td>1st Float Offset</td>
<td>-10,364 to 10,364</td>
</tr>
<tr>
<td>40424</td>
<td>2nd Float Offset</td>
<td>-10,364 to 10,364</td>
</tr>
<tr>
<td>40425</td>
<td>†Gain Offset</td>
<td>0 to 255</td>
</tr>
<tr>
<td>40426</td>
<td>4 mA Set Point</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40427</td>
<td>20 mA Set Point</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40428</td>
<td>†4 mA Calibration</td>
<td>0 - 1,000</td>
</tr>
<tr>
<td>40429</td>
<td>†20 mA Calibration</td>
<td>0 - 1,000</td>
</tr>
<tr>
<td>40430</td>
<td>t1d</td>
<td>NA*</td>
</tr>
<tr>
<td>40431</td>
<td>t1w</td>
<td>NA*</td>
</tr>
<tr>
<td>40432</td>
<td>t1t</td>
<td>NA*</td>
</tr>
<tr>
<td>40433</td>
<td>t2d</td>
<td>NA*</td>
</tr>
<tr>
<td>40434</td>
<td>t2w</td>
<td>NA*</td>
</tr>
<tr>
<td>40435</td>
<td>t2t</td>
<td>NA*</td>
</tr>
<tr>
<td>40436-40437</td>
<td>Parameter 1 Data</td>
<td>0 to 1,000,000 mm</td>
</tr>
<tr>
<td>40438-40439</td>
<td>Parameter 2 Data</td>
<td>0 to 1,000,000 mm</td>
</tr>
<tr>
<td>40440-40441</td>
<td>Parameter 3 Data</td>
<td>0 to 1,000,000 mm</td>
</tr>
<tr>
<td>40442-40443</td>
<td>Parameter 4 Data</td>
<td>0 to 1,000,000 mm</td>
</tr>
<tr>
<td>40444-40445</td>
<td>Parameter 5 Data</td>
<td>0 to 1,000,000 mm</td>
</tr>
</tbody>
</table>

*These registers are not used by the MPX-E/R2 or MPX-E/R3, even though they are labeled in the APG Modbus software.

†Setting is factory calibrated. Do not adjust.
• **MPX-E/R2 and MPX-E/R3 APG Modbus Sensor Parameters**

40401 - Units

Determines the units of measure for the Calculated Reading when Application Type is set to 0, 1, or 7.

1 = Feet
2 = Inches
3 = Meters

For MPX-E/R2 and MPX-E/R3, this is seen only when using APG Modbus to program the MPX. This setting does not affect the 4-20 mA output.

40402 - Application Type

Determines the type of Calculated Reading (Input Registers 30303-04 and 30305-06) performed by the sensor.

0 = Distance
1 = Level
2 = Standing Cylindrical Tank with or without Hemispherical Bottom
3 = Standing Cylindrical Tank with or without Conical Bottom
4 = Standing Rectangular Tank with or without Chute Bottom
5 = Horizontal Cylindrical Tank with or without Spherical Ends
6 = Spherical Tank
7 = Pounds (Linear Scaling)
8 = N/A
9 = Vertical Oval Tank
10 = Horizontal Oval Tank
11 = Strapping Chart

See MPX-E/R Application Type Parameters pages 26-30.

For the MPX-E/R2 and MPX-E/R3, the 4-20 mA output can be scaled for linear output over distance/level (Application Type 0 or 1) or scaled for linear output over volume (Application Type 2 - 11). When setup in any of the volumetric application types, the 4-20mA output becomes linear with regards to the calculated volume (linear mA change per gallon, liter, etc.), rather than the raw distance/level reading.

40403 - Volume Units

Determines the units of measure for the Calculated Reading when Application Type is set to 2 - 6 or 9 - 11.

1 = Feet³
2 = Million Feet³
3 = Gallons
4 = Meters³
5 = Liters
6 = Inches³
7 = Barrels

40404 - Decimal Place

Determines the number of decimal places included in the Calculated Reading(s). For MPX-E/R2 and MPX-E/R3, this is seen only when using APG Modbus to program the MPX. This setting does not affect the 4-20 mA output.
40405 - Maximum Distance (Factory Calibrated)

Sets the distance (beginning from the Zero Reference) to the point where the sensor will stop looking for float signals, usually the bottom of the stem. A float beyond the Maximum Distance value will not be detected.

40406 - Full Distance

Sets the positive distance (beginning from the sensor Zero Reference) to the point where the monitored vessel is considered full.

40407 - Empty Distance

Sets the positive distance (beginning from the Zero Reference) to the point where the monitored vessel is considered empty (usually the bottom of the stem).

40408 - Sensitivity (Factory Calibrated)

Sets the level of gain that is applied to the returning float signal.

40409 - Pulses (Factory Calibrated)

Controls the duration of the signal being sent down the magnetostrictive wire.

40410 - Blanking (Factory Calibrated)

Sets the blanking distance, which is the zone from the Zero Reference of the sensor to the point from which the first signal will be valid. Signals from a float in the blanking area will be ignored.

40411 - Fail Safe

Sets the output condition that the MPX will revert to in the event of a loss of signal condition.

0 = Disable (no fail safe output)
1 = 3.8 mA
2 = 22 mA

For Application Type (Holding Register 40402) 0 and disabled fail safe, Loss of Signal defaults to 20 mA.
For Application Type 1 - 11 and disabled fail safe, Loss of Signal defaults to 4 mA.
40412 - Averaging

Sets the number of qualified received float signals to average for the raw reading. Qualified received signals are placed in a first-in, first-out buffer, the contents of which are averaged for the raw reading. The larger the number of qualified received signals being averaged, the smoother the reading will be, and the slower the reading will be to react to quickly changing levels.

40413 - Filter Window

Determines the physical range (0 - 10,364 mm) of qualified received signals, based on the current raw reading. Signals beyond the +/- Filter Window range of the current reading will not qualify unless the average moves. Signals outside the extents of the Filter Window are written to the Out of Range samples buffer (Holding Register 40414). See Figure 3.2.

Example:
Window = 300 mm
Out of Range Samples = 10

40414 - Out of Range Samples

Sets the number of consecutive samples outside the Filter Window (Holding Register 40413) necessary to automatically adjust the current reading and move the Filter Window.

40415 - Sample Rate

Sets the update rate the sensor (10 - 1000 ms). Shorter time delays allow for quicker sensor response times to changing levels. Typical setting is 200 ms. Settings under 200 ms are not recommended.
40416 - Multiplier (Factory Calibrated)

Calibrates the distance reading span. The Multiplier is shown by the values 1 - 1999, but these values are understood to represent 0.001 - 1.999. The default of 1000 (i.e. 1.000) is used for most applications.

40417 - Offset (Factory Calibrated)

Sets the Zero Reference of the sensor, the point from which the calculated distance is measured.

40418 - Pre filter

Defines the physical range (0 - 10,364 mm) of the start up (pre-filter) window. Four sample readings must be found within the Pre filter window for the MPX sensor to successfully start up.
This register is used for factory diagnostics only.

40419 - Noise limit

Sets the limit for number of signals (0-255) outside the Pre filter range for the MPX at start up. If the Noise Limit is reached before four readings register within the Pre filter window, the MPX will not start up.
This register is used for factory diagnostics only.

40421 - RTD Offset C°

Calibrates the RTD temperature sensor. (This register is shown in APG Modbus, but not used by 4-20 mA MPX probes.)

40422 - Float Window (Factory Calibrated)

Sets the distance (0 - 1000 mm) between the first (i.e. top) float and the point at which the sensor will begin looking for the second (bottom) float. This will be set to 0 for single float.

40423 - 1st Float Offset

Used to calibrate top float reading (-10,364 - 10,364 mm). Differences in fluid specific gravity can change the level at which a float rests in the liquid. Use this parameter to match probe reading to confirmed liquid level.
40424 - 2nd Float Offset

Used to calibrate bottom float reading (-10,364 - 10,364 mm). Differences in fluid specific gravity can change the level at which a float rests in the liquid. Use this parameter to match probe reading to confirmed liquid level.

40425 - Gain Offset (Factory Calibrated)

Used to move the centerline of the float response signal to optimize signal strength (0 - 255).

40426 - 4mA Set

Used to set the distance (in mm) which will correspond to an output of 4 mA. For Application 0 (Distance), this is measured from the Zero Reference. For all other applications (Level & Volumetric) this is measured from the bottom of the probe. See Figure 3.3.

40427 - 20mA Set

Used to set the distance (in mm) which will correspond to an output of 20 mA. For Application 0 (Distance), this is measured from the Zero Reference. For all other applications (Level & Volumetric) this is measured from the bottom of the probe. See Figure 3.3.

40428 - 4mA Cal (Factory Calibrated)

Used to calibrate the 4 mA output of the MPX-E/R2 or -E/R3.

40429 - 20mA Cal (Factory Calibrated)

Used to calibrate the 20 mA output of the MPX-E/R2 or -E/R3.
- **MPX-E/R Application Type Parameters**

Application 0 - Distance

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>1 = Feet, 2 = Inches, 3 = Meters</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>0</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>--</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal (Calculated)</td>
<td>0 - 3</td>
</tr>
</tbody>
</table>

Application 1 - Level

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>1 = Feet, 2 = Inches, 3 = Meters</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>1</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>--</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal (Calculated)</td>
<td>0 - 3</td>
</tr>
</tbody>
</table>

Application 2 - Volume of Standing Cylindrical Tank ± Hemispherical Bottom

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>2</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>1</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>0 - 7</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal (Calculated)</td>
<td>0 - 3</td>
</tr>
<tr>
<td>40405</td>
<td>Max Distance</td>
<td>(factory set)</td>
</tr>
<tr>
<td>40406</td>
<td>Full Distance</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40407</td>
<td>Empty Distance</td>
<td>0 - 11,278 mm</td>
</tr>
<tr>
<td>40436-40437</td>
<td>Tank Diameter</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40438-40439</td>
<td>Radius of Bottom Hemisphere</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
</tbody>
</table>

NOTE: For all applications other than Distance, Empty Distance is usually the same as Max Distance.
Application 3 - Volume of Standing Cylindrical Tank ± Conical Bottom

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>--</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>3</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>1 - 7</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal (Calculated)</td>
<td>0 - 3</td>
</tr>
<tr>
<td>40405</td>
<td>Max Distance</td>
<td>(factory set)</td>
</tr>
<tr>
<td>40406</td>
<td>Full Distance</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40407</td>
<td>Empty Distance</td>
<td>0 - 10,364 mm / 0 - 11,278 mm</td>
</tr>
<tr>
<td>40436-40437</td>
<td>Tank Diameter</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40438-40439</td>
<td>Cone Diameter (at bottom of cone)</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40440-40441</td>
<td>Length (height) of Cone</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
</tbody>
</table>

Application 4 - Volume of Standing Rectangular Tank ± Chute Bottom

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>--</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>4</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>1 - 7</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal (Calculated)</td>
<td>0 - 3</td>
</tr>
<tr>
<td>40405</td>
<td>Max Distance</td>
<td>(factory set)</td>
</tr>
<tr>
<td>40406</td>
<td>Full Distance</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40407</td>
<td>Empty Distance</td>
<td>0 - 10,364 mm / 0 - 11,278 mm</td>
</tr>
<tr>
<td>40436-40437</td>
<td>Tank X Dimension</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40438-40439</td>
<td>Tank Y Dimension</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40440-40441</td>
<td>Chute X Dimension</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40442-40443</td>
<td>Chute Y Dimension</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40444-40445</td>
<td>Length (height) of Chute</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
</tbody>
</table>
Application 5 - Volume of Horizontal Cylindrical Tank ± Hemispherical Ends

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>--</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>5</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>1 - 7</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal (Calculated)</td>
<td>0 - 3</td>
</tr>
<tr>
<td>40405</td>
<td>Max Distance</td>
<td>(factory set)</td>
</tr>
<tr>
<td>40406</td>
<td>Full Distance</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40407</td>
<td>Empty Distance</td>
<td>0 - 10,364 mm / 0 - 11,278 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40436-40437</td>
<td>Tank Length</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40438-40439</td>
<td>Tank Diameter</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40440-40441</td>
<td>Radius of End Hemispheres</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
</tbody>
</table>

Application 6 - Volume of Spherical Tank

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>--</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>6</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>1 - 7</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal (Calculated)</td>
<td>0 - 3</td>
</tr>
<tr>
<td>40405</td>
<td>Max Distance</td>
<td>(factory set)</td>
</tr>
<tr>
<td>40406</td>
<td>Full Distance</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40407</td>
<td>Empty Distance</td>
<td>0 - 10,364 mm / 0 - 11,278 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40436-40437</td>
<td>Tank Diameter</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
</tbody>
</table>
Application 7 - Pounds (Linear Scaling)

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>1 = Feet, 2 = Inches, 3 = Meters</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>7</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>--</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal (Calculated)</td>
<td>0 - 3</td>
</tr>
<tr>
<td>40405</td>
<td>Max Distance</td>
<td>(factory set)</td>
</tr>
<tr>
<td>40406</td>
<td>Full Distance</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40407</td>
<td>Empty Distance</td>
<td>0 - 10,364 mm / 0 - 11,278 mm</td>
</tr>
<tr>
<td>40436-40437</td>
<td>Multiplier (linear scalar)</td>
<td>0 - 1,000,000 (1000 = 1.000)</td>
</tr>
</tbody>
</table>

Application 8 - N/A

Application 9 - Volume of Vertical Oval Tank

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>--</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>9</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>1 - 7</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal (Calculated)</td>
<td>0 - 3</td>
</tr>
<tr>
<td>40405</td>
<td>Max Distance</td>
<td>(factory set)</td>
</tr>
<tr>
<td>40406</td>
<td>Full Distance</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40407</td>
<td>Empty Distance</td>
<td>0 - 10,364 mm / 0 - 11,278 mm</td>
</tr>
<tr>
<td>40436-40437</td>
<td>Tank Length</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40438-40439</td>
<td>Tank Depth</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40440-40441</td>
<td>Tank Width</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
</tbody>
</table>

![Diagram of vertical oval tank](image)
Application 10 - Volume of Horizontal Oval Tank

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>--</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>10</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>1 - 7</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal (Calculated)</td>
<td>(factory set)</td>
</tr>
<tr>
<td>40405</td>
<td>Max Distance</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40406</td>
<td>Full Distance</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40407</td>
<td>Empty Distance</td>
<td>0 - 10,364 mm / 0 - 11,278 mm</td>
</tr>
<tr>
<td>40436-40437</td>
<td>Tank Length</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40438-40439</td>
<td>Tank Depth</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
<tr>
<td>40440-40441</td>
<td>Tank Width</td>
<td>0 - 1,000,000 (mm)</td>
</tr>
</tbody>
</table>

Application 11 - Strapping Chart (Polynomial Values)

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40400</td>
<td>Device Address</td>
<td>1 to 247</td>
</tr>
<tr>
<td>40401</td>
<td>Units</td>
<td>1 = Feet, 2 = Inches, 3 = Meters</td>
</tr>
<tr>
<td>40402</td>
<td>Application Type</td>
<td>11</td>
</tr>
<tr>
<td>40403</td>
<td>Volume Units</td>
<td>1 - 7</td>
</tr>
<tr>
<td>40404</td>
<td>Decimal (Calculated)</td>
<td>(factory set)</td>
</tr>
<tr>
<td>40405</td>
<td>Max Distance</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40406</td>
<td>Full Distance</td>
<td>0 - 10,364 mm</td>
</tr>
<tr>
<td>40407</td>
<td>Empty Distance</td>
<td>0 - 10,364 mm / 0 - 11,278 mm</td>
</tr>
<tr>
<td>40436-40437</td>
<td>X^3 Coefficient</td>
<td>0 - 1,000,000</td>
</tr>
<tr>
<td>40438-40439</td>
<td>X^2 Coefficient</td>
<td>0 - 1,000,000</td>
</tr>
<tr>
<td>40440-40441</td>
<td>X^1 Coefficient</td>
<td>0 - 1,000,000</td>
</tr>
<tr>
<td>40442-40443</td>
<td>X^0 Coefficient</td>
<td>0 - 1,000,000</td>
</tr>
</tbody>
</table>
Chapter 4: Maintenance

• General Care

Your MPX level sensor is designed to be low maintenance. However, in general, you should:
 • Periodically inspect your MPX to ensure the stem and floats are free of any heavy buildup that might impede the movement of the floats.
 • Ensure the housing cover is snugly secured. If the cover becomes damaged or is misplaced, order a replacement immediately.

• Repair and Returns

Should your MPX level sensor require service, please contact the factory via phone, email, or online chat. We will issue you a Return Material Authorization (RMA) number with instructions.

• Phone: 888-525-7300
• Email: sales@apg sensors.com
• Online chat at www.apgsensors.com

Please have your part number and serial number available. See Warranty and Warranty Restrictions for more information.

⚠️ IMPORTANT: All repairs and adjustments of the MPX level sensor must be made by the factory. Modifying, disassembling, or altering the MPX is strictly prohibited.
Hazardous Location Installation and Certification

Chapter 5: Hazardous Location Installation and Certification

INSTALLATION IN:
CLASS I, DIV 1 & 2, GROUPS C & D, MAX. TEMP. 85°C
Ex d IIB, Ex nA IIB
CLASS I, ZONE 1; AEEx d IIB, CLASS I, ZONE 2; AEEx nA IIB

WARNING: OPEN CIRCUIT BEFORE REMOVING COVER OR KEEP COVER TIGHT WHILE CIRCUITS ARE ALIVE.
AVERTISSEMENT: CIRCUIT OUVERT AVANT DE LE DEMONTER OU DE GARIR LA COUVERCLE VERREEI PENDANT QUE LES CIRCUITS SOIENT AVIVES.

WARNING: EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SAFETY FOR CLASS I, DIVISION 2.
AVERTISSEMENT RISQUE D'EXPLOSION - LA SUBSTITUTION DE COMPOSANTS PEUT NUISSER A LA CONFORMITE POUR LA CLASSE I, DIVISION 2.

WARNING: EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.
AVERTISSEMENT - RISQUE D'EXPLOSION - NE PAS DECONNECTER L'EQUIPEMENT, A MOINS QUE L'ALIMENTATION EST COUPEE OU QUE LA ZONE EST CONNUE POUR ETRE N'ECO NANGUEUX.

SENSORS WITH COATING OR SLEEVE OPTION:
CATEURS AVEC DE L'ENDUIT OU DE LA MANCHE OPTION:

WARNING: POTENTIALLY ELECTROSTATIC (ES) CHARGING HAZARD - CLEAN WITH DAMP CLOTH OR AVOID STATIC DISCHARGE BY WRAPPING PLASTIC WITH DAMP CLOTH.
AVERTISSEMENT (ES) - POTENTIEL ELECTROSTATIQUE (ES) DE CHARGE DE DANGER - NETTOYER AVEC UN CHIFFON HUMIDE OU A EVITER LES DÉCHARGES D'ÉLECTRICITÉ STATIQUE EN ENROBANT UN PLASTIQUE AVEC UN CHIFFON HUMIDE.
Certificate of Compliance

Certificate: 2397437
Master Contract: 237484
Project: 80016480
Date Issued: October 16, 2019

Issued to: Automation Products Group Inc
1025 West 1700 North
Logan, Utah, 84321
UNITED STATES

Attention: Mr. Scott Hutchins

The products listed below are eligible to bear the CSA Mark shown with adjacent indicators 'C' and 'US' for Canada and US or with adjacent indicator 'US' for US only or without either indicator for Canada only

Products:

CLASS 2258 02 - PROCESS CONTROL EQUIPMENT - FOR HAZARDOUS LOCATIONS
CLASS 2258 82 - PROCESS CONTROL EQUIPMENT - FOR HAZARDOUS LOCATIONS, U.S.
Requirements

Class I, Division 1 & 2, Groups C and D T4
Ex d IIB T4
Ex nA IIB T4
Class I, Zone 1; AEx d IIB T4
Class I, Zone 2; AEx nA IIB T4

- Float Level Sensors, Model MPX- E, R, G & T (MPX- abc-de-fghi-jjj), rated 12 - 24 Vdc, 80mA, or rated 12 to 24 Vdc, 4-20mA; operating ambient Ta is 85°C; Ingress protection IP65; Field wiring is non-incendive when installed per drawing 9003468.
Class I, Division 2, Groups C and D T4
Ex nA IIB T4
Class I, Zone 2; AEx nA IIB T4

- Float Level Sensors, Model MPX- F (model MPX- abc-de-fghi-jjj), rated 12 - 24 Vdc, 80mA, or rated 12 to 24 Vdc, 4-20mA; operating ambient Ta is 85°C; Ingress protection IP65; Field wiring is non-incendive when installed per drawing 9003468

Notes for all equipment:

1. The model code breakdown is as follows:
 a= E, R, F, G or T;
 b= 1, 2, 3 or 4, 5 (addition of new PCA with different stuffing options);
 c= A,B or C,
 d= A, B, C, D, E, F, G, Z, X, Y, T, R, M, or J, N, A-Z, A1 to A9 through Z1-Z9; (new floats as needed);
 e= N, B, D, Y, W, U, S, P, L, K, or I, A-Z, A1 to A9 through Z1-Z9; (new floats as needed);
 f= F, R, P, S, N, or O;
 g= 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6;
 h=W, S, or T; (New mount connection);
 i= A, B, C D, E, F, or G; (additional wetted materials include sleeves or baked on coatings); and
 j= 12–153 inches for the 1/2" stem Type E or
 36–456 inches for Stem Type R, Type G and Type T or
 48–720 inches for Flex stem Type F.

2. The equipment is intended to be installed as required by the applicable electrical code (CEC, NEC) and as specified by the manufacturers Installation Instructions.

3. The installation will be inspected by the authority with jurisdiction in the area where installed.

APPLICABLE REQUIREMENTS

CSA C22.2 No 0-10 General Requirements – Canadian Electrical Code, Part II – Tenth Edition
MARKINGS

Please refer MARKINGS section under Descriptive Report and Test Results for details.